Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia

Abstract

In subjects with schizophrenia, impairments in working memory are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC). This dysfunction appears to be due, at least in part, to abnormalities in γ-aminobutyric acid (GABA)-mediated inhibitory circuitry. To test the hypothesis that altered GABA-mediated circuitry in the DLPFC of subjects with schizophrenia reflects expression changes of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission, we conducted a systematic expression analysis of GABA-related transcripts in the DLPFC of 14 pairs of schizophrenia and age-, sex- and post-mortem interval-matched control subjects using a customized DNA microarray with enhanced sensitivity and specificity. Subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding (1) presynaptic regulators of GABA neurotransmission (67 kDa isoform of glutamic acid decarboxylase (GAD67) and GABA transporter 1), (2) neuropeptides (somatostatin (SST), neuropeptide Y (NPY) and cholecystokinin (CCK)) and (3) GABAA receptor subunits (α1, α4, β3, γ2 and δ). Real-time qPCR and/or in situ hybridization confirmed the deficits for six representative transcripts tested in the same pairs and in an extended cohort, respectively. In contrast, GAD67, SST and α1 subunit mRNA levels, as assessed by in situ hybridization, were not altered in the DLPFC of monkeys chronically exposed to antipsychotic medications. These findings suggest that schizophrenia is associated with alterations in inhibitory inputs from SST/NPY-containing and CCK-containing subpopulations of GABA neurons and in the signaling via certain GABAA receptors that mediate synaptic (phasic) or extrasynaptic (tonic) inhibition. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia is mediated by altered GABA neurotransmission in certain DLPFC microcircuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Weinberger DR, Berman KF, Zec RF . Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Arch Gen Psychiatry 1986; 43: 114–124.

    Article  CAS  PubMed  Google Scholar 

  2. Goldman-Rakic PS . Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 1994; 6: 348–357.

    Article  CAS  PubMed  Google Scholar 

  3. Elvevåg B, Goldberg TE . Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 2000; 14: 1–21.

    Article  PubMed  Google Scholar 

  4. Lewis DA, Hashimoto T, Volk DW . Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 2005; 6: 312–324.

    Article  CAS  PubMed  Google Scholar 

  5. Sawaguchi T, Matsumura M, Kubota K . Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys. Exp Brain Res 1989; 75: 457–469.

    Article  CAS  PubMed  Google Scholar 

  6. Rao SG, Williams GV, Goldman-Rakic PS . Destruction and creation of spatial tuning by disinhibition: GABAA blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 2000; 20: 485–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney Jr WE et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52: 258–266.

    CAS  PubMed  Google Scholar 

  8. Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC . Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABAA receptor α-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression. Neuroscience 1999; 93: 441–448.

    Article  CAS  PubMed  Google Scholar 

  9. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA . Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 2000; 57: 237–245.

    Article  CAS  PubMed  Google Scholar 

  10. Guidotti A, Auta J, Davis JM, Gerevini VD, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder. Arch Gen Psychiatry 2000; 57: 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  11. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  PubMed  Google Scholar 

  12. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA . GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am J Psychiatry 2001; 158: 256–265.

    Article  CAS  PubMed  Google Scholar 

  13. Hashimoto T, Bergen SE, Nguyen QL, Xu B, Monteggia LM, Pierri JN et al. Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia. J Neurosci 2005; 25: 372–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB . Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 2005; 57: 252–260.

    Article  CAS  PubMed  Google Scholar 

  15. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003; 23: 6315–6326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Condé F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA . Local circuit neurons immunoreactive for calretinin, calbindin D-28k, or parvalbumin in monkey prefrontal cortex: distribution and morphology. J Comp Neurol 1994; 341: 95–116.

    Article  PubMed  Google Scholar 

  17. Lewis DA, Campbell MJ, Morrison JH . An immunohistochemical characterization of somatostatin-28 and somatostatin-28 (1-12) in monkey prefrontal cortex. J Comp Neurol 1986; 248: 1–18.

    Article  CAS  PubMed  Google Scholar 

  18. Lund JS, Lewis DA . Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics. J Comp Neurol 1993; 328: 282–312.

    Article  CAS  PubMed  Google Scholar 

  19. Hanada S, Mita T, Nishino N, Tanaka C . 3H]Muscimol binding sites increased in autopsied brains of chronic schizophrenics. Life Sci 1987; 40: 239–266.

    Article  Google Scholar 

  20. Benes FM, Vincent SL, Marie A, Khan Y . Up-regulation of GABA-A receptor binding on neurons of the prefrontal cortex in schizophrenic subjects. Neuroscience 1996; 75: 1021–1031.

    CAS  PubMed  Google Scholar 

  21. Volk DW, Pierri JN, Fritschy J-M, Auh S, Sampson AR, Lewis DA . Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex 2002; 12: 1063–1070.

    Article  PubMed  Google Scholar 

  22. Huntsman MM, Tran BV, Potkin SG, Bunney WE, Jones EG . Altered ratios of alternatively spliced long and short gamma 2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc Natl Acad Sci USA 1998; 95: 15066–15071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vawter MP, Crook JM, Hyde TM, Kleinman JE, Weinberger DR, Becker KG et al. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr Res 2002; 58: 11–20.

    Article  PubMed  Google Scholar 

  24. Glantz LA, Lewis DA . Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73.

    Article  CAS  PubMed  Google Scholar 

  25. Imbeaud S, Graudens E, Boulanger V, Barlet X, Zaborski P, Eveno E et al. Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 2005; 33: 1–12.

    Article  Google Scholar 

  26. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  PubMed  Google Scholar 

  27. Hayes TL, Cameron JL, Fernstrom JD, Lewis DA . A comparative analysis of the distribution of prosomatostatin-derived peptides in human and monkey neocortex. J Comp Neurol 1991; 303: 584–599.

    Article  CAS  PubMed  Google Scholar 

  28. Mirnics K, Pevsner J . Progress in the use of microarray technology to study the neurobiology of disease. Nat Neurosci 2004; 7: 434–439.

    Article  CAS  PubMed  Google Scholar 

  29. Unger T, Korade Z, Lazarov O, Terrano D, Sisodia SS, Mirnics K . True and false discovery in DNA microarray experiments: transcriptome changes in the hippocampus of presenilin 1 mutant mice. Methods 2005; 37: 261–273.

    Article  CAS  PubMed  Google Scholar 

  30. Glorioso C, Sabatini M, Unger T, Hashimoto T, Monteggia LM, Lewis DA et al. Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood. Mol Psychiatry 2006; 11: 633–648.

    Article  CAS  PubMed  Google Scholar 

  31. Lepre J, Rice JJ, Tu Y, Stolovitzky G . Genes@Work: an efficient algorithm for pattern discovery and multivariate feature selection in gene expression data. Bioinformatics 2004; 20: 1033–1044.

    Article  CAS  PubMed  Google Scholar 

  32. Stolovitzky GA, Kundaje A, Held GA, Duggar KH, Haudenschild CD, Zhou D et al. Statistical analysis of MPSS measurements: application to the study of LPS-activated macrophage gene expression. Proc Natl Acad Sci USA 2005; 102: 1402–1407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neter J, Kutner MH, Nachtsheim CJ, Wasserman W . Applied Linear Statistical Models, 4th edn. McGraw-Hill: Boston, 1996.

    Google Scholar 

  34. Dorph-Petersen K-A, Pierri JN, Perel JM, Sun Z, Sampson AR, Lewis DA . The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: a comparison of haloperidol and olanzapine in macaque monkeys. Neuropsychopharm 2005; 30: 1649–1661.

    Article  CAS  Google Scholar 

  35. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  PubMed  Google Scholar 

  36. Dournaud P, Cervera-Pierot P, Hirsch E, Javoy-Agid F, Kordon C, Agid Y et al. Somatostatin messenger RNA-containing neurons in Alzheimer's disease: an in situ hybridization study in hippocampus, parahippocampal cortex and frontal cortex. Neuroscience 1994; 61: 755–764.

    Article  CAS  PubMed  Google Scholar 

  37. Bachus SE, Hyde TM, Herman MM, Egan MF, Kleinman JE . Abnormal cholesystokinin mRNA levels in entorhinal cortex of schizophrenics. J Psychiatry Res 1997; 31: 233–256.

    Article  CAS  Google Scholar 

  38. Akbarian S, Huang HS . Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. Brain Res Brain Res Rev 2006; 52: 293–304.

    Article  CAS  Google Scholar 

  39. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mimmack ML, Ryan M, Baba H, Navarro-Ruiz J, Iritani S, Faull RL et al. Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc Natl Acad Sci USA 2002; 99: 4680–4685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 2001; 19: 342–347.

    Article  CAS  PubMed  Google Scholar 

  42. Hollingshead D, Lewis DA, Mirnics K . Platform influence on DNA microarray data in postmortem brain research. Neurobiol Dis 2005; 18: 649–655.

    Article  CAS  PubMed  Google Scholar 

  43. Mirnics K, Levitt P, Lewis DA . Critical appraisal of DNA microarrays in psychiatric genomics. Biol Psychiatry 2006; 60: 163–176.

    Article  CAS  PubMed  Google Scholar 

  44. Weickert CS, Hyde TM, Lipska BK, Herman MM, Weinberger DR, Kleinman JE . Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia. Mol Psychiatry 2003; 8: 592–610.

    Article  CAS  PubMed  Google Scholar 

  45. Gabriel SM, Davidson M, Haroutunian V, Powchik P, Bierer LM, Purohit DP et al. Neuropeptide deficits in schizophrenia vs. Alzheimer's disease cerebral cortex. Biol Psychiatry 1996; 39: 82–91.

    Article  CAS  PubMed  Google Scholar 

  46. Virgo L, Humphries C, Mortimer A, Barnes T, Hirsch SR, de Belleroche J . Cholecystokinin messenger RNA deficit in frontal and temporal cerebral cortex in schizophrenia. Biol Psychiatry 1995; 37: 694–701.

    Article  CAS  PubMed  Google Scholar 

  47. Ding C, Cantor CR . Quantitative analysis of nucleic acids – the last few years of progress. J Biochem Mol Biol 2004; 37: 1–10.

    CAS  PubMed  Google Scholar 

  48. Pierri JN, Chaudry AS, Woo T-U, Lewis DA . Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am J Psychiatry 1999; 156: 1709–1719.

    CAS  PubMed  Google Scholar 

  49. Jensen K, Chiu CS, Sokolova I, Lester HA, Mody I . GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J Neurophysiol 2003; 90: 2690–2701.

    Article  CAS  PubMed  Google Scholar 

  50. Overstreet LS, Westbrook GL . Synapse density regulates independence at unitary inhibitory synapses. J Neurosci 2003; 23: 2618–2626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kubota Y, Hattori R, Yui Y . Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res 1994; 649: 159–173.

    Article  CAS  PubMed  Google Scholar 

  52. González-Albo MC, Elston GN, DeFelipe J . The human temporal cortex: characterization of neurons expressing nitric oxide synthase, neuropeptides and calcium-binding proteins, and their glutamate receptor subunit profiles. Cereb Cortex 2001; 11: 1170–1181.

    Article  PubMed  Google Scholar 

  53. Hendry SHC, Jones EG, Emson PC . Morphology, distribution, and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex. J Neurosci 1984; 4: 2497–2517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. DeLima AD, Morrison JH . Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey. J Comp Neurol 1989; 283: 212–227.

    Article  CAS  Google Scholar 

  55. Kawaguchi Y, Kubota Y . Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. J Neurosci 1996; 16: 2701–2715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Melchitzky DS, Lewis DA . Synaptic targets of somatostatin-labeled axon terminals in monkey prefrontal cortex. Soc Neurosci Abstr 2005; 675: 6.

    Google Scholar 

  57. Baraban SC, Tallent MK . Interneuron diversity series: interneuronal neuropeptides – endogenous regulators of neuronal excitability. Trends Neurosci 2004; 27: 135–142.

    Article  CAS  PubMed  Google Scholar 

  58. Kawaguchi Y, Kondo S . Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 2002; 31: 277–287.

    Article  PubMed  Google Scholar 

  59. Schiffmann SN, Vanderhaeghen JJ . Distribution of cells containing mRNA encoding cholecystokinin in the rat central nervous system. J Comp Neurol 1991; 304: 219–233.

    Article  CAS  PubMed  Google Scholar 

  60. Nusser Z, Sieghart W, Somogyi P . Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 1998; 18: 1693–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mangan PS, Sun C, Carpenter M, Goodkin HP, Sieghart W, Kapur J . Cultured hippocampal pyramidal neurons express two kinds of GABAA receptors. Mol Pharmacol 2005; 67: 775–788.

    Article  CAS  PubMed  Google Scholar 

  62. Wei W, Zhang N, Peng Z, Houser CR, Mody I . Perisynaptic localization of delta subunit-containing GABA(A) receptors and their activation by GABA spillover in the mouse dentate gyrus. J Neurosci 2003; 23: 10650–10661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Farrant M, Nusser Z . Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 2005; 6: 215–229.

    Article  CAS  PubMed  Google Scholar 

  64. Hendry SHC, Huntsman MM, Viñuela A, Mohler H, de Blas AL, Jones EG . GABAA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood. J Neurosci 1994; 14: 2383–2401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fritschy J-M, Mohler H . GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 1995; 359: 154–194.

    Article  CAS  PubMed  Google Scholar 

  66. Petryshen TL, Middleton FA, Tahl AR, Rockwell GN, Purcell S, Aldinger KA et al. Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry 2005; 10: 1074–1088, 1057.

    Article  CAS  PubMed  Google Scholar 

  67. Kralic JE, Korpi ER, O'Buckley TK, Homanics GE, Morrow AL . Molecular and pharmacological characterization of GABA(A) receptor alpha1 subunit knockout mice. J Pharmacol Exp Ther 2002; 302: 1037–1045.

    Article  CAS  PubMed  Google Scholar 

  68. Ponomarev I, Maiya R, Harnett MT, Schafer GL, Ryabinin AE, Blednov YA et al. Transcriptional signatures of cellular plasticity in mice lacking the alpha1 subunit of GABAA receptors. J Neurosci 2006; 26: 5673–5683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG et al. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 1998; 95: 15718–15723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Akbarian S, Huntsman MS, Kim JJ, Tafazzoli A, Potkin SG, Bunney Jr WE et al. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. Cereb Cortex 1995; 5: 550–560.

    Article  CAS  PubMed  Google Scholar 

  71. Kim AM, Matzilevich DA, Walsh JP, Benes FM, Woo TW . Parvalbumin-containing neurons and disturbances of prefrontal cortical circuitry in schizophrenia. Soc Neurosci Abstr 2005; 912: 1.

    Google Scholar 

  72. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C . Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 2004; 5: 793–807.

    Article  CAS  PubMed  Google Scholar 

  73. Somogyi P, Klausberger T . Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 2005; 562: 9–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants MH43784 (DAL), MH45156 (DAL), MH067234 (KM) and MH070786 (KM), by an investigator-initiated grant from Eli Lilly (DAL) and by a NARSAD Young Investigator Award (TH). We thank Ms Mary L Brady and Ms Jimette Gilmartin for their assistance in preparing figures and the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D A Lewis.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry Web site (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, T., Arion, D., Unger, T. et al. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 13, 147–161 (2008). https://doi.org/10.1038/sj.mp.4002011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002011

Keywords

This article is cited by

Search

Quick links