Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Low molecular weight inhibitors of Myc–Max interaction and function

Abstract

c-Myc is helix–loop–helix–leucine zipper (HLH–ZIP) oncoprotein that is frequently deregulated in human cancers. In order to bind DNA, regulate target gene expression, and function in a biological context, c-Myc must dimerize with another HLH–ZIP protein, Max. A large number of c-Myc target genes have been identified, and many of the encoded proteins are transforming. Such functional redundancy, however, complicates therapeutic strategies aimed at inhibiting any single target gene product. Given this consideration, we have instead attempted to identify ways by which c-Myc itself could be effectively disabled. We have used a yeast two-hybrid approach to identify low-molecular-weight compounds that inhibit c-Myc–Max association. All of the compounds prevented transactivation by c-Myc–Max heterodimers, inhibited cell cycle progression, and prevented the in vitro growth of fibroblasts in a c-Myc-dependent manner. Several of the compounds also inhibited tumor growth in vivo. These results show that the yeast two-hybrid screen is useful for identifying compounds that can be exploited in mammalian cells. More specifically, they provide a means by which structural analogs, based upon these first-generation Myc–Max inhibitors, can be developed to enhance antitumor efficacy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Auvinen M, Paasinen A, Anderson LC and Holtta E . (1992). Nature, 360, 355–358.

  • Bai C and Elledge SJ . (1996). Methods Enzymol., 273, 331–347.

  • Baudino TA and Cleveland JL . (2001). Mol. Cell. Biol., 21, 691–702.

  • Bello-Fernandez C, Packham G and Cleveland JL . (1993). Proc. Natl Acad. Sci. USA, 90, 7804–7809.

  • Bengal E, Flores O, Rangarajan PN, Chen A, Weintraub H and Verma IM . (1994). Proc. Natl. Acad. Sci. USA, 91, 6221–6225.

  • Berg T, Cohen SB, Desharnais J, Sonderegger C, Maslyar DJ, Goldberg J, Boger DL and Vogt PK . (2002). Proc. Natl. Acad. Sci. USA, 99, 3830–3835.

  • Bowlin TL, McKnown B and Sunkara P . (1986). Cell Immunol., 98, 341–350.

  • Brandvold KA, Neiman P and Ruddell A . (2000). Oncogene, 19, 2780–2785.

  • Chen J, Willingham T, Margraff LR, Schreiber-Agus N, DePinho RA and Nissen PD . (1995). Nat. Med., 1, 638–643.

  • Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN and Golub TR . (2000). Proc. Natl. Acad. Sci. USA, 97, 3260–3265.

  • Dang CV . (1999). Mol. Cell. Biol., 19, 1–11.

  • deAlboran IM, O'Hagan RC, Gartner F, Malynn B, Davidson L, Rickert L, Rajewsky K, DePinho RA and Alt FW . (2001). Immunity, 14, 45–55.

  • Ebinuma H, Saito H, Kosuga M, Wakabayashi K, Saito Y, Takagi T, Nakamoto N, Okuyama T and Ishii H . (2001). J. Cell. Physiol., 188, 56–66.

  • Foster BA, Coffey HA, Morin MJ and Rastinejad F . (1999). Science, 286, 2507–2510.

  • Freytag SO . (1988). Mol. Cell. Biol., 8, 1614–1624.

  • Grandori C, Cowley SM, James LP and Eisenman RN . (2000). Annu. Rev. Cell Dev. Biol., 16, 653–699.

  • Guo QM, Malek RL, Kim S, Chiao C, He M, Ruffy M, Sanka K, Lee NH, Dang CV and Liu ET . 2000. Cancer Res., 60, 5922–5928.

  • Hasskarl J and Munger K . (2002). Cancer Biol. Ther., 1, 91–96.

  • Holt JT, Redner RL and Nienhuis AW . (1988). Mol. Cell. Biol., 8, 963–973.

  • Jain M, Arvantis, Chu K, Dewey W, Leonhardt E, Trinh M, Sundberg CD, Bishop JM and Felsher DW . (2002). Science, 297, 102–104.

  • Kimura S, Maekawa T, Hirakawa K, Murakami A and Abe T . (1995). Cancer Res., 55, 1379–1384.

  • Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV and Gudkov AV . (1999). Science, 285, 1733–1737.

  • Langlands K, Anand G, Yin X and Prochownik EV . (1997). J. Biol. Chem., 272, 19785–19793.

  • Littlewood TD, Hancock DC, Danielson PS, Parker MG and Evan I . (1995). Nucleic Acids Res., 25, 1686–1690.

  • Lüscher B and Larsson L-G . (1999). Oncogene, 18, 2995–2966.

  • Matayek MK, Obaya AJ, Adachi S and Sedivy JM . (1997). Cell Growth Differ., 8, 1039–1048.

  • Nesbit CE, Grove LE, Yin XY and Prochownik EV . (1998). Cell Growth Differ., 9, 731–741.

  • Nesbit CE, Tersak JM and Prochownik EV . (1999). Oncogene, 18, 3004–3016.

  • Nesbit CE, Tersak JM, Grove LE, Drzal A, Choi H and Prochownik EV . (2000). Oncogene, 19, 3200–3212.

  • O'Hagan RC, Schreiber-Agus N, Chen K, David G, Engelman JA, Schwab R, Alland L, Thomson C, Ronning DR, Sacchettini JC, Meltzer P and DePinho RA . (2000). Nat. Genet., 24, 113–119.

  • Oster SK, Ho CS, Soucie EL and Penn LZ . (2002). Adv. Cancer Res., 84, 81–154.

  • Packham G and Cleveland JL . (1994). Mol. Cell. Biol., 14, 5741–5747.

  • Prochownik EV and Kukowska JF . (1986). Nature, 322, 848–850.

  • Prochownik EV, Kukowska-Latallo JF and Rodgers C . (1988). Mol. Cell. Biol., 8, 3683–3695.

  • Prochownik EV and Van Antwerp ME . (1993). Proc. Natl. Acad. Sci. USA, 90, 960–964.

  • Smith MJ, Charron-Prochownik DC and Prochownik EV . (1990). Mol. Cell. Biol., 10, 5333–5339.

  • Stern DF, Roberts AB, Roche NS, Sporn MB and Weinberg RA . (1986). Mol. Cell. Biol., 6, 870–877.

  • Turner R and Tjian R . (1989). Science, 243, 1689–1694.

  • Van Antwerp ME, Chen DG, Chang C and Prochownik EV . (1992). Proc. Natl. Acad. Sci. USA, 89, 9010–9014.

  • Van Waardenburg RC, Meijer C, Burger H, Nooter K, De Vries EG, Mulder NH and De Jong S . (1997). Int. J. Cancer, 73, 544–550.

  • Wang JL, Liu D, Zhang Z-J, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES and Huang Z . (2000). Proc. Natl. Acad. Sci. USA, 97, 7124–7129.

  • Wechsler DS, Shelly CC, Petroff CA and Dang CV . (1997). Cancer Res., 57, 4905–4912.

  • Yin XY, Grove L, Datta N, Katula K, Long MW and Prochownik EV . (2001). Cancer Res., 61, 6487–6493.

  • Yin XY, Grove L, Datta N, Long MW and Prochownik EV . (1999a). Oncogene, 17, 1177–1184.

  • Yin XY, Grove L, Rogulski K and Prochownik EV . (2002). J. Biol. Chem., 277, 19998–20010.

  • Yin XY, Gupta K, Han WP, Levitan ES and Prochownik EV . (1999b). Oncogene, 18, 6621–6634.

  • Zhang H, Fan S and Prochownik EV . (1997). J. Biol. Chem., 272, 17416–17424.

Download references

Acknowledgements

We thank Eileen C Southwick and Kathleen Cooley for technical assistance, Sean Ward for help in animal experiments, Anatoly Grishin for suggestions concerning yeast transformation and propagation, and Tom Look and Ray Ruddon for comments on the manuscript. This work was supported by grants from the US Department of Defense (DAMD 17-00-1-0013) and NIH (HL33741) to EVP, and by The Fiske Drug Discovery Fund and NIH Grant P12 CA 52995 to J.L.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward V Prochownik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, X., Giap, C., Lazo, J. et al. Low molecular weight inhibitors of Myc–Max interaction and function. Oncogene 22, 6151–6159 (2003). https://doi.org/10.1038/sj.onc.1206641

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206641

Keywords

This article is cited by

Search

Quick links