Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole

Abstract

Individual variation in drug metabolism is a major cause of unpredictable side effects during therapy. Drug metabolism is controlled by a class of orphan nuclear receptors (NRs), which regulate expression of genes such as CYP (cytochrome)3A4 and MDR-1 (multi-drug resistance-1), that are involved in this process. We have found that xenobiotic-mediated induction of CYP3A4 and MDR-1 gene transcription was inhibited by ketoconazole, a commonly used antifungal drug. Ketoconazole mediated its effect by inhibiting the activation of NRs, human pregnenolone X receptor and constitutive androstene receptor, involved in regulation of CYP3A4 and MDR-1. The effect of ketoconazole was specific to the group of NRs that control xenobiotic metabolism. Ketoconazole disrupted the interaction of the xenobiotic receptor PXR with the co-activator steroid receptor co-activator-1. Ketoconazole treatment resulted in delayed metabolism of tribromoethanol anesthetic in mice, which was correlated to the inhibition of PXR activation and downmodulation of cyp3a11 and mdr-1 genes and proteins. These studies demonstrate for the first time that ketoconazole represses the coordinated activation of genes involved in drug metabolism, by blocking activation of a specific subset of NRs. Our results suggest that ketoconazole can be used as a pan-antagonist of NRs involved in xenobiotic metabolism in vivo, which may lead to novel strategies that improve drug effect and tolerance.

This is a preview of subscription content, access via your institution

Access options

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CAR:

constitutive androstene receptor

CYP:

cytochrome

DMSO:

dimethylsulfoxide

EcR:

ecdysone receptor

EGFR:

epidermal growth factor receptor

ELISA:

enzyme-linked immunosorbent assay

FBS:

fetal bovine serum

FXR:

farnesol X receptor

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

hPXR:

human pregnenolone X receptor

LXR:

liver activated receptor

MDR:

multidrug resistance

MDR-1:

multidrug resistance-1

PCN:

pregnenolone 16 α-carbonitrile

PPAR:

peroxisome proliferator-activated receptor

RAR:

retinoic acid receptor

RXR:

retinoid X receptor

SMRT:

silencing mediator of retinoid and thyroid hormone receptor

SRC-1:

steroid receptor co-activator-1

SXR:

steroid and xenobiotic receptor

TR:

thyroid receptor

UGT:

uridine glucuronosyl transferase

VDR:

vitamin D receptor

References

  • Albers M, Kranz H, Kober I, Kaiser C, Klink M, Suckow J et al. (2005). Mol Cell Proteomics 4: 205–213.

  • Beetens JR, Loots W, Somers Y, Coene MC, De Clerck F . (1986). Biochem Pharmacol 35: 883–891.

  • Berthold DR, Sternberg CN, Tannock IF . (2005). J Clin Oncol 23: 8247–8252.

  • Bhalla S, Ozalp C, Fang S, Xiang L, Kemper JK . (2004). J Biol Chem 279: 45139–45147.

  • Blumberg B, Sabbagh Jr W, Juguilon H, Bolado Jr J, Van Meter CM, Ong ES et al. (1998). Genes Dev 12: 3195–3205.

  • Bourdoncle A, Labesse G, Margueron R, Castet A, Cavailles V, Royer CA . (2005). J Mol Biol 347: 921–934.

  • Ding X, Staudinger JL . (2005). J Pharmacol Exp Ther 312: 849–856.

  • Dresser GK, Spence JD, Bailey DG . (2000). Clin Pharmacokinet 38: 41–57.

  • Dussault I, Yoo HD, Lin M, Wang E, Fan M, Batta AK et al. (2003). Proc Natl Acad Sci USA 100: 833–838.

  • Ellsworth JL, Carlstrom AJ, Deikman J . (1994). Biochim Biophys Acta 1210: 321–328.

  • Eloranta JJ, Meier PJ, Kullak-Ublick GA . (2005). Methods Enzymol 400: 511–530.

  • Evans RM . (2005). Mol Endocrinol 19: 1429–1438.

  • Fujino T, Sato Y, Une M, Kanayasu-Toyoda T, Yamaguchi T, Shudo K et al. (2003). J Steroid Biochem Mol Biol 87: 247–252.

  • Gnerre C, Blattler S, Kaufmann MR, Looser R, Meyer UA . (2004). Pharmacogenetics 14: 635–645.

  • Hamaguchi T, Nagase M, Higuchi R, Takiuchi I . (2002). Nippon Ishinkin Gakkai Zasshi 43: 95–98.

  • Handschin C, Meyer UA . (2005). Arch Biochem Biophys 433: 387–396.

  • Johnson DR, Li CW, Chen LY, Ghosh JC, Chen JD . (2006). Mol Pharmacol 69: 99–108.

  • Kanda N, Watanabe S . (2002a). J Invest Dermatol 119: 590–599.

  • Kanda N, Watanabe S . (2002b). J Invest Dermatol 119: 174–181.

  • Kim SG . (1992). Mol Pharmacol 42: 273–279.

  • Kliewer SA, Goodwin B, Willson TM . (2002). Endocr Rev 23: 687–702.

  • Lee HS, Miyauchi K, Nagata Y, Fukuda R, Sasagawa S, Endoh H et al. (2002). J Biochem (Tokyo) 131: 399–405.

  • Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA . (1998). J Clin Invest 102: 1016–1023.

  • Li T, Chiang JY . (2005). Am J Physiol Gastrointest Liver Physiol 288: G74–G84.

  • Loose DS, Kan PB, Hirst MA, Marcus RA, Feldman D . (1983). J Clin Invest 71: 1495–1499.

  • Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM et al. (2002). Science 296: 1313–1316.

  • Mani S, Huang H, Sundarababu S, Liu W, Kalpana G, Smith AB et al. (2005). Clin Cancer Res 11: 6359–6369.

  • Matheny CJ, Ali RY, Yang X, Pollack GM . (2004). Drug Metab Dispos 32: 1008–1014.

  • Miquel M, Correa M, Aragon CM . (1999). Pharmacol Biochem Behav 64: 89–93.

  • Pascussi JM, Drocourt L, Gerbal-Chaloin S, Fabre JM, Maurel P, Vilarem MJ . (2001). Eur J Biochem 268: 6346–6358.

  • Selye H . (1971). J Pharm Sci 60: 1–28.

  • Sohn YC, Kim SW, Lee S, Kong YY, Na DS, Lee SK et al. (2003). Mol Endocrinol 17: 366–372.

  • Sonoda J, Rosenfeld JM, Xu L, Evans RM, Xie W . (2003). Curr Drug Metab 4: 59–72.

  • Stalla GK, Stalla J, Huber M, Loeffler JP, Hollt V, Von Werder K et al. (1988). Endocrinology 122: 618–623.

  • Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A et al. (2001). Proc Natl Acad Sci USA 98: 3369–3374.

  • Synold TW, Dussault I, Forman BM . (2001). Nat Med 7: 584–590.

  • Tabb MM, Kholodovych V, Grun F, Zhou C, Welsh WJ, Blumberg B . (2004). Environ Health Perspect 112: 163–169.

  • Takagi K, Alvarez JG, Favata MF, Trzaskos JM, Strauss III JF . (1989). J Biol Chem 264: 12352–12357.

  • Takeshita A, Taguchi M, Koibuchi N, Ozawa Y . (2002). J Biol Chem 277: 32453–32458.

  • Tzanakakis GN, Krambovitis E, Tsatsakis AM, Vezeridis MP . (2002). Int J Gastrointest Cancer 32: 23–30.

  • Undevia SD, Gomez-Abuin G, Ratain MJ . (2005). Nat Rev Cancer 5: 447–458.

  • Venkatakrishnan K, von Moltke LL, Greenblatt DJ . (2000). Clin Pharmacokinet 38: 111–180.

  • Wei P, Zhang J, Dowhan DH, Han Y, Moore DD . (2002). Pharmacogenomics J 2: 117–126.

  • Wei P, Zhang J, Egan-Hafley M, Liang S, Moore DD . (2000). Nature 407: 920–923.

  • Xie W, Barwick JL, Simon CM, Pierce AM, Safe S, Blumberg B et al. (2000). Genes Dev 14: 3014–3023.

  • Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES et al. (2001). Proc Natl Acad Sci USA 98: 3375–3380.

  • Xie W, Yeuh MF, Radominska-Pandya A, Saini SP, Negishi Y, Bottroff BS et al. (2003). Proc Natl Acad Sci USA 100: 4150–4155.

  • Yamamoto A, Okubo Y, Oshima H, Oh-i T, Koga M . (2000). J Dermatol 27: 598–603.

  • Yong WP, Ramirez J, Innocenti F, Ratain MJ . (2005). Clin Cancer Res 11: 6699–6704.

  • Zhu Z, Kim S, Chen T, Lin JH, Bell A, Bryson J et al. (2004). J Biomol Screen 9: 533–540.

Download references

Acknowledgements

We thank Drs Ronald Evans, Hilda Ye and I David Goldman for helpful and insightful discussions. Dr Kenny Ye from the Department of Epidemiology and Biostatistics of Albert Einstein College of Medicine provided statistical support and advised on statistical methods used in this manuscript. This study was supported by a grant from the Damon Runyon Cancer Research Foundation (CI: 15-02 to SM) and a grant from ACS (#CCG-104933) to GVK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Mani.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Wang, H., Sinz, M. et al. Inhibition of drug metabolism by blocking the activation of nuclear receptors by ketoconazole. Oncogene 26, 258–268 (2007). https://doi.org/10.1038/sj.onc.1209788

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209788

Keywords

This article is cited by

Search

Quick links