Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress

Abstract

We previously identified SIRT2, an nicotinamide adenine dinucleotide (NAD)-dependent tubulin deacetylase, as a protein downregulated in gliomas and glioma cell lines, which are characterized by aneuploidy. Other studies reported SIRT2 to be involved in mitotic progression in the normal cell cycle. We herein investigated whether SIRT2 functions in the mitotic checkpoint in response to mitotic stress caused by microtubule poisons. By monitoring chromosome condensation, the exogenously expressed SIRT2 was found to block the entry to chromosome condensation and subsequent hyperploid cell formation in glioma cell lines with a persistence of the cyclin B/cdc2 activity in response to mitotic stress. SIRT2 is thus a novel mitotic checkpoint protein that functions in the early metaphase to prevent chromosomal instability (CIN), characteristics previously reported for the CHFR protein. We further found that histone deacetylation, but not the aberrant DNA methylation of SIRT2 5′untranslated region is involved in the downregulation of SIRT2. Although SIRT2 is normally exclusively located in the cytoplasm, the rapid accumulation of SIRT2 in the nucleus was observed after treatment with a nuclear export inhibitor, leptomycin B and ionizing radiation in normal human fibroblasts, suggesting that nucleo-cytoplasmic shuttling regulates the SIRT2 function. Collectively, our results suggest that the further study of SIRT2 may thus provide new insights into the relationships among CIN, epigenetic regulation and tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

5-Aza-dC:

5-aza-2′-deoxycytidine

ChIP:

chromatin immunoprecipitation

CIN:

chromosomal instability

EGFP:

enhanced green fluorescent protein

IR:

ionizing irradiation

TSA:

trichostatin A

LMB:

leptomycin B

NES:

nuclear export signal

References

  • Alonso M, Tamasdan C, Miller DC, Newcomb EW . (2003). Flavopiridol induces apoptosis in glioma cell lines independent of retinoblastoma and p53 tumor suppressor pathway alterations by a caspase-independent pathway. Mol Cancer Ther 2: 139–150.

    Article  CAS  Google Scholar 

  • Amon A . (1999). The spindle checkpoint. Curr Opin Genet Dev 9: 69–75.

    Article  CAS  Google Scholar 

  • Bae NS, Swanson MJ, Vassilev A, Howard BH . (2004). Human histone deacetylase SIRT2 interacts with the homeobox transcription factor HOXA10. J Biochem 135: 695–700.

    Article  CAS  Google Scholar 

  • Bertholon J, Wang Q, Falette N, Verny C, Auclair J, Chassot C et al. (2003). Chfr inactivation is not associated to chromosomal instability in colon cancers. Oncogene 22: 8956–8960.

    Article  CAS  Google Scholar 

  • Bigner SH, Vogelstein B . (1990). Cytogenetics and molecular genetics of malignant gliomas and medulloblastoma. Brain Pathol 1: 12–18.

    Article  CAS  Google Scholar 

  • Brandes JC, van Engeland M, Wouters KA, Weijenberg MP, Herman JG . (2005). CHFR promoter hypermethylation in colon cancer correlates with the microsatellite instability phenotype. Carcinogenesis 26: 1152–1156.

    Article  CAS  Google Scholar 

  • Chu YW, Wang R, Schmid I, Sakamoto KM . (1999). Analysis with flow cytometry of green fluorescent protein expression in leukemic cells. Cytometry 36: 333–339.

    Article  CAS  Google Scholar 

  • Cleveland DW, Mao Y, Sullivan KF . (2003). Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112: 407–421.

    Article  CAS  Google Scholar 

  • Cortez D, Elledge SJ . (2000). Conducting the mitotic symphony. Nature 406: 354–356.

    Article  CAS  Google Scholar 

  • Di Leonardo A, Khan SH, Linke SP, Greco V, Seidita G, Wahl GM . (1997). DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function. Cancer Res 57: 1013–1019.

    CAS  PubMed  Google Scholar 

  • Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA . (2003). Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 23: 3173–3185.

    Article  CAS  Google Scholar 

  • Finnin MS, Donigian JR, Pavletich NP . (2001). Structure of the histone deacetylase SIRT2. Nat Struct Biol 8: 621–625.

    Article  CAS  Google Scholar 

  • Hartwell LH, Kastan MB . (1994). Cell cycle control and cancer. Science 266: 1821–1828.

    Article  CAS  Google Scholar 

  • Hiratsuka M, Inoue T, Toda T, Kimura N, Shirayoshi Y, Kamitani H et al. (2003). Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem Biophys Res Commun 309: 558–566.

    Article  CAS  Google Scholar 

  • Honda T, Tamura G, Waki T, Kawata S, Nishizuka S, Motoyama T . (2004). Promoter hypermethylation of the Chfr gene in neoplastic and non-neoplastic gastric epithelia. Br J Cancer 90: 2013–2016.

    Article  CAS  Google Scholar 

  • Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417: 455–458.

    Article  CAS  Google Scholar 

  • Imai Y, Shiratori Y, Kato N, Inoue T, Omata M . (1999). Mutational inactivation of mitotic checkpoint genes, hsMAD2 and hBUB1, is rare in sporadic digestive tract cancers. Jpn J Cancer Res 90: 837–840.

    Article  CAS  Google Scholar 

  • Kang D, Chen J, Wong J, Fang G . (2002). The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition. J Cell Biol 156: 249–259.

    Article  CAS  Google Scholar 

  • Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B et al. (1999). Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA 96: 9112–9117.

    Article  CAS  Google Scholar 

  • Kyrylenko S, Kyrylenko O, Suuronen T, Salminen A . (2003). Differential regulation of the Sir2 histone deacetylase gene family by inhibitors of class I and II histone deacetylases. Cell Mol Life Sci 60: 1990–1997.

    Article  CAS  Google Scholar 

  • la Cour T, Gupta R, Rapacki K, Skriver K, Poulsen FM, Brunak S . (2003). NESbase version 1.0: a database of nuclear export signals. Nucleic Acids Res 31: 393–396.

    Article  CAS  Google Scholar 

  • la Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S . (2004). Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17: 527–536.

    Article  CAS  Google Scholar 

  • Lengauer C, Kinzler KW, Vogelstein B . (1998). Genetic instabilities in human cancers. Nature 396: 643–649.

    Article  CAS  Google Scholar 

  • Mattaj IW, Englmeier L . (1998). Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67: 265–306.

    Article  CAS  Google Scholar 

  • Mizuno K, Osada H, Konishi H, Tatematsu Y, Yatabe Y, Mitsudomi T et al. (2002). Aberrant hypermethylation of the CHFR prophase checkpoint gene in human lung cancers. Oncogene 21: 2328–2333.

    Article  CAS  Google Scholar 

  • Muhua L, Adames NR, Murphy MD, Shields CR, Cooper JA . (1998). A cytokinesis checkpoint requiring the yeast homologue of an APC-binding protein. Nature 393: 487–491.

    Article  CAS  Google Scholar 

  • Musacchio A, Hardwick KG . (2002). The spindle checkpoint: structural insights into dynamic signaling. Nat Rev Mol Cell Biol 3: 731–741.

    Article  CAS  Google Scholar 

  • Nitta M, Tsuiki H, Arima Y, Harada K, Nishizaki T, Sasaki K et al. (2002). Hyperploidy induced by drugs that inhibit formation of microtubule promotes chromosome instability. Genes Cells 7: 151–162.

    Article  CAS  Google Scholar 

  • Nishigaki R, Osaki M, Hiratsuka M, Toda T, Murakami K, Jeang KT et al. (2005). Proteomic identification of differentially-expressed genes in human gastric carcinomas. Proteomics 5: 3205–3213.

    Article  CAS  Google Scholar 

  • North BJ, Marshall BL, Borra MT, Denu JM, Verdin E . (2003). The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11: 437–444.

    Article  CAS  Google Scholar 

  • Paulovich AG, Toczyski DP, Hartwell LH . (1997). When checkpoints fail. Cell 88: 315–321.

    Article  CAS  Google Scholar 

  • Piperno G, LeDizet M, Chang XJ . (1987). Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol 104: 289–302.

    Article  CAS  Google Scholar 

  • Qian K, Chen H, Wei Y, Hu J, Zhu G . (2005). Differentiation of endometrial stromal cells in vitro: down-regulation of suppression of the cell cycle inhibitor p57 by HOXA10? Mol Hum Reprod 11: 245–251.

    Article  CAS  Google Scholar 

  • Roberts EC, Deed RW, Inoue T, Norton JD, Sharrocks AD . (2001). Id helix-loop-helix proteins antagonize pax transcription factor activity by inhibiting DNA binding. Mol Cell Biol 21: 524–533.

    Article  CAS  Google Scholar 

  • Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S et al. (2005). Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene 24: 4531–4539.

    Article  CAS  Google Scholar 

  • Scolnick DM, Halazonetis TD . (2000). Chfr defines a mitotic stress checkpoint that delays entry into metaphase. Nature 406: 430–435.

    Article  CAS  Google Scholar 

  • Serrador JM, Cabrero JR, Sancho D, Mittelbrunn M, Urzainqui A . (2004). HDAC6 deacetylase activity links the tubulin cytoskeleton with immune synapse organization. Immunity 20: 417–428.

    Article  CAS  Google Scholar 

  • Shackney SE, Smith CA, Miller BW, Burholt DR, Murtha K, Giles HR et al. (1989). Model for the genetic evolution of human solid tumors. Cancer Res 49: 3344–3354.

    CAS  PubMed  Google Scholar 

  • Takahashi T, Shivapurkar N, Riquelme E, Shigematsu H, Reddy J, Suzuki M et al. (2004). Aberrant promoter hypermethylation of multiple genes in gallbladder carcinoma and chronic cholecystitis. Clin Cancer Res 10: 6126–6133.

    Article  CAS  Google Scholar 

  • Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I . (2005). Polo-like kinases (Plks) and cancer. Oncogene 24: 287–291.

    Article  CAS  Google Scholar 

  • Tsuiki H, Nitta M, Tada M, Inagaki M, Ushio Y, Saya H . (2001). Mechanism of hyperploid cell formation induced by microtubule inhibiting drug in glioma cell lines. Oncogene 20: 420–429.

    Article  CAS  Google Scholar 

  • Xie S, Xie B, Lee MY, Dai W . (2005). Regulation of cell cycle checkpoints by polo-like kinases. Oncogene 24: 277–286.

    Article  Google Scholar 

  • Yu X, Minter-Dykhouse K, Malureanu L, Zhao WM, Zhang D, Merkle CJ et al. (2005). Chfr is required for tumor suppression and Aurora A regulation. Nat Genet 37: 401–406.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S Abe (Tottori University) and Dr A Kurimasa (Tottori University) for technical assistance with the metaphase preparations and for valuable suggestions, respectively. We thank Cell Resource Center for Biomedical Research Institute of Development, Aging and Cancer (Tohoku University) for a kind gift of TIG-1 cells. This work was supported in part by grants from the Public Trust Haraguchi Memorial Cancer Research Fund (T. I.), the Ministry of Education, Culture, Sports, Science and Technology of Japan (T. I., M. H., M.O. and M. O.), and The 21st Century COE Program: The Research Core for Chromosome Engineering Technology (T. I. and M. O.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Oshimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, T., Hiratsuka, M., Osaki, M. et al. SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 26, 945–957 (2007). https://doi.org/10.1038/sj.onc.1209857

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209857

Keywords

This article is cited by

Search

Quick links