Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation

Abstract

P53 controls the growth and survival of cells by acting in response to a multitude of cellular stresses. It is, however, not yet fully understood how different p53 activation pathways result in either cell cycle arrest or apoptosis. We and others have described an N-terminally truncated p53 protein (p53/47) originating from a second translation initiation site in the p53 messenger RNA (mRNA), which can interact with p53 and impose altered stability and transactivation properties to p53 complexes. Here we show that cap-dependent and cap-independent mechanisms of initiation govern the translation of the p53 mRNA. Changes in synthesis of full-length p53 or p53/47 are regulated through distinct cell stress-induced pathways acting through separate regions of the p53 mRNA. We also show that some cytotoxic drugs require the presence of full-length p53 to induce apoptosis, whereas for others p53/47 is sufficient. This indicates that by harbouring alternative translation initiation sites, the p53 mRNA gives rise to different levels of the p53 isoforms which help to orchestrate the cell biological outcome of p53 activation in response to different types of cell stress. This sheds new light into the way p53 can integrate and differentiate a large multiplicity of changes in the cellular environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. (2005). p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19: 2122–2137.

    Article  CAS  Google Scholar 

  • Coldwell MJ, Mitchell SA, Stoneley M, MacFarlane M, Willis AE . (2000). Initiation of Apaf-1 translation by internal ribosome entry. Oncogene 19: 899–905.

    Article  CAS  Google Scholar 

  • Courtois S, Verhaegh G, North S, Luciani MG, Lassus P, Hibner U et al. (2002). DeltaN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene 21: 6722–6728.

    Article  CAS  Google Scholar 

  • Creancier L, Mercier P, Prats AC, Morello D . (2001). c-myc Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. Mol Cell Biol 21: 1833–1840.

    Article  CAS  Google Scholar 

  • de Rozieres S, Maya R, Oren M, Lozano G . (2000). The loss of mdm2 induces p53-mediated apoptosis. Oncogene 19: 1691–1697.

    Article  CAS  Google Scholar 

  • Fernandez J, Yaman I, Sarnow P, Snider MD, Hatzoglou M . (2002). Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2alpha. J Biol Chem 277: 19198–19205.

    Article  CAS  Google Scholar 

  • Fu L, Ma W, Benchimol S . (1999). A translation repressor element resides in the 3′ untranslated region of human p53 mRNA. Oncogene 18: 6419–6424.

    Article  CAS  Google Scholar 

  • Fu L, Minden MD, Benchimol S . (1996). Translational regulation of human p53 gene expression. EMBO J 15: 4392–4401.

    Article  CAS  Google Scholar 

  • Geballe AP, Morris DR . (1994). Initiation codons within 5′-leaders of mRNAs as regulators of translation. Trends Biochem Sci 19: 159–164.

    Article  CAS  Google Scholar 

  • Ghosh A, Stewart D, Matlashewski G . (2004). Regulation of human p53 activity and cell localization by alternative splicing. Mol Cell Biol 24: 7987–7997.

    Article  CAS  Google Scholar 

  • Gray NK, Wickens M . (1998). Control of translation initiation in animals. Annu Rev Cell Dev Biol 14: 399–458.

    Article  CAS  Google Scholar 

  • Hansen S, Lane DP, Midgley CA . (1998). The N terminus of the murine p53 tumour suppressor is an independent regulatory domain affecting activation and thermostability. J Mol Biol 275: 575–588.

    Article  CAS  Google Scholar 

  • Harding HP, Zhang Y, Ron D . (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397: 271–274.

    Article  CAS  Google Scholar 

  • Harris SL, Levine AJ . (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24: 2899–2908.

    Article  CAS  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    Article  CAS  Google Scholar 

  • Hellen CU, Sarnow P . (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15: 1593–1612.

    Article  CAS  Google Scholar 

  • Herbreteau CH, Weill L, Decimo D, Prevot D, Darlix JL, Sargueil B et al. (2005). HIV-2 genomic RNA contains a novel type of IRES located downstream of its initiation codon. Nat Struct Mol Biol 12: 1001–1007.

    Article  CAS  Google Scholar 

  • Holcik M, Lefebvre C, Yeh C, Chow T, Korneluk RG . (1999). A new internal-ribosome-entry-site motif potentiates XIAP-mediated cytoprotection. Nat Cell Biol 1: 190–192.

    Article  CAS  Google Scholar 

  • Holcik M, Sonenberg N . (2005). Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6: 318–327.

    Article  CAS  Google Scholar 

  • Honda R, Tanaka H, Yasuda H . (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420: 25–27.

    Article  CAS  Google Scholar 

  • Jackson RJ . (2000). A comparative view of initiation site selection mechanisms. In: Sonenberg N, Hershey JWB, Mathews MB (eds). Translational Control of Gene Expression. Cold Spring Harbour Press, NY, pp 127–184.

    Google Scholar 

  • Johannes G, Sarnow P . (1998). Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites. Rna 4: 1500–1513.

    Article  CAS  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH . (1997). Regulation of p53 stability by Mdm2. Nature 387: 299–303.

    Article  CAS  Google Scholar 

  • Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ et al. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274: 948–953.

    Article  CAS  Google Scholar 

  • Lang KJ, Kappel A, Goodall GJ . (2002). Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 13: 1792–1801.

    Article  CAS  Google Scholar 

  • Maier B, Gluba W, Bernier B, Turner T, Mohammad K, Guise T et al. (2004). Modulation of mammalian life span by the short isoform of p53. Genes Dev 18: 306–319.

    Article  CAS  Google Scholar 

  • Mokdad-Gargouri R, Belhadj K, Gargouri A . (2001). Translational control of human p53 expression in yeast mediated by 5′-UTR-ORF structural interaction. Nucleic Acids Res 29: 1222–1227.

    Article  CAS  Google Scholar 

  • Mosner J, Mummenbrauer T, Bauer C, Sczakiel G, Grosse F, Deppert W . (1995). Negative feedback regulation of wild-type p53 biosynthesis. EMBO J 14: 4442–4449.

    Article  CAS  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C . (1991). A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139: 271–279.

    Article  CAS  Google Scholar 

  • Pelletier J, Sonenberg N . (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334: 320–325.

    Article  CAS  Google Scholar 

  • Pyronnet S, Pradayrol L, Sonenberg N . (2000). A cell cycle-dependent internal ribosome entry site. Mol Cell 5: 607–616.

    Article  CAS  Google Scholar 

  • Rohaly G, Chemnitz J, Dehde S, Nunez AM, Heukeshoven J, Deppert W et al. (2005). A novel human p53 isoform is an essential element of the ATR-intra-S phase checkpoint. Cell 122: 21–32.

    Article  CAS  Google Scholar 

  • Schneider R . (2001). New ways of initiating translation in eukaryotes. Mol Cell Biol 21: 8238–8246.

    Article  CAS  Google Scholar 

  • Spriggs KA, Bushell M, Mitchell SA, Willis AE . (2005). Internal ribosome entry segment-mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death Differ 12: 585–591.

    Article  CAS  Google Scholar 

  • Stoneley M, Willis AE . (2004). Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23: 3200–3207.

    Article  CAS  Google Scholar 

  • Takagi M, Absalon MJ, McLure KG, Kastan MB . (2005). Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123: 49–63.

    Article  CAS  Google Scholar 

  • Venot C, Maratrat M, Sierra V, Conseiller E, Debussche L . (1999). Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains. Oncogene 18: 2405–2410.

    Article  CAS  Google Scholar 

  • Warnakulasuriyarachchi D, Cerquozzi S, Cheung HH, Holcik M . (2004). Translational induction of the inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is mediated via an inducible internal ribosome entry site element. J Biol Chem 279: 17148–17157.

    Article  CAS  Google Scholar 

  • Wazer DE, Chu Q, Liu XL, Gao Q, Safaii H, Band V . (1994). Loss of p53 protein during radiation transformation of primary human mammary epithelial cells. Mol Cell Biol 14: 2468–2478.

    Article  CAS  Google Scholar 

  • Yin Y, Stephen CW, Luciani MG, Fahraeus R . (2002). p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol 4: 462–467.

    Article  CAS  Google Scholar 

  • Zhu J, Zhou W, Jiang J, Chen X . (1998). Identification of a novel p53 functional domain that is necessary for mediating apoptosis. J Biol Chem 273: 13030–13036.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the AICR, the AVENIR programme (INSERM) and by La Ligue Contre le Cancer. BV and ER were supported by grant NR8338-3/2005 from the Ministry of Health of the Czech Republic. MMC is supported by Grant SFRH/BD/16697/2004 from the Fundação para a Ciência e a Tecnologia of Portugal. The MLS-1765 cells were a kind gift from Dr Pierre Åman, Göteborg University, Sweden and we are thankful to Dr Anne Willis, Nottingham, UK for providing the hairpin construct, to Prof. Fabien Calvo for help with the MS and Dr Samia Mourah for help with designing primers. We are also thankful to Dr Y Yin for her earlier work on p53 translation. Flow Cytometry analysis was performed at the Imagery centre of the Technical Platform of IUH-IFR105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Fåhraeus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Candeias, M., Powell, D., Roubalova, E. et al. Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene 25, 6936–6947 (2006). https://doi.org/10.1038/sj.onc.1209996

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209996

Keywords

This article is cited by

Search

Quick links