Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Differential regulation and properties of MAPKs

Abstract

Mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs including embryogenesis, proliferation, differentiation and apoptosis based on cues derived from the cell surface and the metabolic state and environment of the cell. In mammals, there are more than a dozen MAPK genes. The best known are the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK(1–3)) and p38(α, β, γ and δ) families. ERK3, ERK5 and ERK7 are other MAPKs that have distinct regulation and functions. MAPK cascades consist of a core of three protein kinases. Despite the apparently simple architecture of this pathway, these enzymes are capable of responding to a bewildering number of stimuli to produce exquisitely specific cellular outcomes. These responses depend on the kinetics of their activation and inactivation, the subcellular localization of the kinases, the complexes in which they act, and the availability of substrates. Fine-tuning of cascade activity can occur through modulatory inputs to cascade component from the primary kinases to the scaffolding accessory proteins. Here, we describe some of the properties of the three major MAPK pathways and discuss how these properties govern pathway regulation and activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Adachi M, Fukuda M, Nishida E . (2000). Nuclear export of MAP kinase (ERK) involves a MAP kinase kinase (MEK)-dependent active transport mechanism. J Cell Biol 148: 849–856.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre V, Uchida T, Yenush L, Davis R, White MF . (2000). The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem 275: 9047–9054.

    CAS  PubMed  Google Scholar 

  • Alarcon-Vargas D, Ronai Z . (2004). c-Jun-NH2 kinase (JNK) contributes to the regulation of c-Myc protein stability. J Biol Chem 279: 5008–5016.

    CAS  PubMed  Google Scholar 

  • Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A et al. (2004). Protein tyrosine phosphatases in the human genome. Cell 117: 699–711.

    CAS  PubMed  Google Scholar 

  • Aoyama K, Nagata M, Oshima K, Matsuda T, Aoki N . (2001). Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the cdc25 homology domain. J Biol Chem 276: 27575–27583.

    CAS  PubMed  Google Scholar 

  • Aplin AE, Hogan BP, Tomeu J, Juliano RL . (2002). Cell adhesion differentially regulates the nucleocytoplasmic distribution of active MAP kinases. J Cell Sci 115: 2781–2790.

    CAS  PubMed  Google Scholar 

  • Arnette D, Gibson TB, Lawrence MC, January B, Khoo S, McGlynn K et al. (2003). Regulation of ERK1 and ERK2 by glucose and peptide hormones in pancreatic beta cells. J Biol Chem 278: 32517–32525.

    CAS  PubMed  Google Scholar 

  • Babu GR, Jin I W, Norman L, Waterfield M, Chang M, Wu X et al. (2006). Phosphorylation of NF-kappaB1/p105 by oncoprotein kinase Tpl2: Implications for a novel mechanism of Tpl2 regulation. Biochim Biophys Acta 1763: 174–181.

    CAS  PubMed  Google Scholar 

  • Barsyte-Lovejoy D, Galanis A, Sharrocks AD . (2002). Specificity determinants in MAPK signaling to transcription factors. J Biol Chem 277: 9896–9903.

    CAS  PubMed  Google Scholar 

  • Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ . (1998). Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol 8: 1049–1057.

    CAS  PubMed  Google Scholar 

  • Bonny C, Nicod P, Waeber G . (1998). IB1, a JIP-1-related nuclear protein present in insulin-secreting cells. J Biol Chem 273: 1843–1846.

    CAS  PubMed  Google Scholar 

  • Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y et al. (2003). Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17: 1969–1978.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buchsbaum RJ, Connolly BA, Feig LA . (2002). Interaction of Rac exchange factors Tiam1 and Ras-GRF1 with a scaffold for the p38 mitogen-activated protein kinase cascade. Mol Cell Biol 22: 4073–4085.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O et al. (2001). Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411: 102–107.

    CAS  PubMed  Google Scholar 

  • Chang CI, Xu B, Akella R, Cobb MH, Goldsmith EJ . (2002). Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol Cell 9: 1241–1249.

    CAS  PubMed  Google Scholar 

  • Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B et al. (2001). MAP kinases. Chem Rev 101: 2449–2476.

    CAS  PubMed  Google Scholar 

  • Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM et al. (2006). Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci USA 103: 2274–2279.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiariello M, Marinissen MJ, Gutkind JS . (2000). Multiple mitogen-activated protein kinase signaling pathways connect the cot oncoprotein to the c-jun promoter and to cellular transformation. Mol Cell Biol 20: 1747–1758.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chinkers M . (2001). Protein phosphatase 5 in signal transduction. Trends Endocrinol Metab 12: 28–32.

    CAS  PubMed  Google Scholar 

  • Cho J, Tsichlis PN . (2005). Phosphorylation at Thr-290 regulates Tpl2 binding to NF-kappaB1/p105 and Tpl2 activation and degradation by lipopolysaccharide. Proc Natl Acad Sci USA 102: 2350–2355.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad PW, Freeman TL, Beitner-Johnson D, Millhorn DE . (1999). EPAS1 trans-activation during hypoxia requires p42/p44 MAPK. J Biol Chem 274: 33709–33713.

    CAS  PubMed  Google Scholar 

  • Conrad PW, Millhorn DE, Beitner-Johnson D . (2000). Hypoxia differentially regulates the mitogen- and stress-activated protein kinases. Role of Ca2+/CaM in the activation of MAPK and p38 gamma. Adv Exp Med Biol 475: 293–302.

    CAS  PubMed  Google Scholar 

  • Court NW, dos Remedios CG, Cordell J, Bogoyevitch MA . (2002). Cardiac expression and subcellular localization of the p38 mitogen-activated protein kinase member, stress-activated protein kinase-3 (SAPK3). J Mol Cell Cardiol 34: 413–426.

    CAS  PubMed  Google Scholar 

  • Cuevas BD, Uhlik MT, Garrington TP, Johnson GL . (2005). MEKK1 regulates the AP-1 dimer repertoire via control of JunB transcription and Fra-2 protein stability. Oncogene 23: 801–809.

    Google Scholar 

  • Das S, Cho J, Lambertz I, Kelliher MA, Eliopoulos AG, Du K et al. (2005). Tpl2/cot signals activate ERK, JNK, and NF-kappaB in a cell-type and stimulus-specific manner. J Biol Chem 280: 23748–23757.

    CAS  PubMed  Google Scholar 

  • Dougherty MK, Muller J, Ritt DA, Zhou M, Zhou XZ, Copeland TD et al. (2005). Regulation of raf-1 by direct feedback phosphorylation. Mol Cell 17: 215–224.

    CAS  PubMed  Google Scholar 

  • Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH et al. (2000). TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 103: 1071–1083.

    CAS  PubMed  Google Scholar 

  • Efimova T, Broome AM, Eckert RL . (2003). A regulatory role for p38delta MAPK in keratinocyte differentiation: Evidence for p38delta - ERK1/2 complex formation. J Biol Chem 278: 34277–34285.

    CAS  PubMed  Google Scholar 

  • Efimova T, Deucher A, Kuroki T, Ohba M, Eckert RL . (2002). Novel protein kinase C isoforms regulate human keratinocyte differentiation by activating a p38 delta mitogen-activated protein kinase cascade that targets CCAAT/enhancer-binding protein alpha. J Biol Chem 277: 31753–31760.

    CAS  PubMed  Google Scholar 

  • Elion EA . (2001). The Ste5p scaffold. J Cell Sci 114: 3967–3978.

    CAS  PubMed  Google Scholar 

  • Enslen H, Raingeaud J, Davis RJ . (1998). Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem 273: 1741–1748.

    CAS  PubMed  Google Scholar 

  • Faccio L, Chen A, Fusco C, Martinotti S, Bonventre JV, Zervos AS . (2000). Mxi2, a splice variant of p38 stress-activated kinase, is a distal nephron protein regulated with kidney ischemia. Am J Physiol Cell Physiol 278: C781–C790.

    CAS  PubMed  Google Scholar 

  • Formstecher E, Ramos JW, Fauquet M, Calderwood DA, Hsieh JC, Canton B et al. (2001). PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev Cell 1: 239–250.

    CAS  PubMed  Google Scholar 

  • Frantz B, Klatt T, Pang M, Parsons J, Rolando A, Williams H et al. (1998). The activation state of p38 mitogen-activated protein kinase determines the efficiency of ATP competition for pyridinylimidazole inhibitor binding. Biochemistry 37: 13846–13853.

    CAS  PubMed  Google Scholar 

  • Furuchi T, Anderson RG . (1998). Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J Biol Chem 273: 21099–21104.

    CAS  PubMed  Google Scholar 

  • Ganiatsas S, Kwee L, Fujiwara Y, Perkins A, Ikeda T, Labow MA et al. (1998). SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proc Natl Acad Sci USA 95: 6881–6886.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heo YS, Kim SK, Seo CI, Kim YK, Sung BJ, Lee HS et al. (2004). Structural basis for the selective inhibition of JNK1 by the scaffolding protein JIP1 and SP600125. EMBO J 23: 2185–2195.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hibi M, Lin A, Smeal T, Minden A, Karin M . (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7: 2135–2148.

    CAS  PubMed  Google Scholar 

  • Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K et al. (2002). A central role for JNK in obesity and insulin resistance. Nature 420: 333–336.

    CAS  PubMed  Google Scholar 

  • Horiuchi D, Barkus RV, Pilling AD, Gassman A, Saxton WM . (2005). APLIP1, a kinesin binding JIP-1/JNK scaffold protein, influences the axonal transport of both vesicles and mitochondria in Drosophila. Curr Biol 15: 2137–2141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JH, Chen T, Zhuang ZH, Kong L, Yu MC, Liu Y et al. (2006). Feedback control of MKP-1 expression by p38. Cell Signal 19: 393–400.

    PubMed  Google Scholar 

  • Hu MC, Wang YP, Mikhail A, Qiu WR, Tan TH . (1999). Murine p38-delta mitogen-activated protein kinase, a developmentally regulated protein kinase that is activated by stress and proinflammatory cytokines. J Biol Chem 274: 7095–7102.

    CAS  PubMed  Google Scholar 

  • Ishibe S, Joly D, Liu ZX, Cantley LG . (2004). Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol Cell 16: 257–267.

    CAS  PubMed  Google Scholar 

  • Ito M, Yoshioka K, Akechi M, Yamashita S, Takamatsu N, Sugiyama K et al. (1999). JSAP1, a novel jun N-terminal protein kinase (JNK)-binding protein that functions as a Scaffold factor in the JNK signaling pathway. Mol Cell Biol 19: 7539–7548.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs D, Glossip D, Xing H, Muslin AJ, Kornfeld K . (1999). Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev 13: 163–175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jesch SA, Lewis TS, Ahn NG, Linstedt AD . (2001). Mitotic phosphorylation of Golgi reassembly stacking protein 55 by mitogen-activated protein kinase ERK2. Mol Biol Cell 12: 1811–1817.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson GL, Lapadat R . (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298: 1911–1912.

    CAS  PubMed  Google Scholar 

  • Kashef K, Lee CM, Ha JH, Reddy EP, Dhanasekaran DN . (2005). JNK-interacting leucine zipper protein is a novel scaffolding protein in the Galpha13 signaling pathway. Biochemistry 44: 14090–14096.

    CAS  PubMed  Google Scholar 

  • Kelkar N, Gupta S, Dickens M, Davis RJ . (2000). Interaction of a mitogen-activated protein kinase signaling module with the neuronal protein JIP3. Mol Cell Biol 20: 1030–1043.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelkar N, Standen CL, Davis RJ . (2005). Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol Cell Biol 25: 2733–2743.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kolch W . (2005). Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6: 827–837.

    CAS  PubMed  Google Scholar 

  • Kyriakis JM, Avruch J . (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81: 807–869.

    CAS  PubMed  Google Scholar 

  • Lawler S, Fleming Y, Goedert M, Cohen P . (1998). Synergistic activation of SAPK1/JNK1 by two MAP kinase kinases in vitro. Curr Biol 8: 1387–1390.

    CAS  PubMed  Google Scholar 

  • Lee CM, Onesime D, Reddy CD, Dhanasekaran N, Reddy EP . (2002). JLP: A scaffolding protein that tethers JNK/p38MAPK signaling modules and transcription factors. Proc Natl Acad Sci USA 99: 14189–14194.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC, Laydon JT, Mcdonnell PC, Gallagher TF, Kumar S, Green D et al. (1994). A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739–746.

    CAS  PubMed  Google Scholar 

  • Letourneux C, Rocher G, Porteu F . (2006). B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J 25: 727–738.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis TS, Shapiro PS, Ahn NG . (1998). Signal transduction through MAP kinase cascades. Adv Cancer Res 74: 49–139.

    CAS  PubMed  Google Scholar 

  • Lu G, Kang YJ, Han J, Herschman HR, Stefani E, Wang Y . (2006). TAB-1 modulates intracellular localization of p38 MAP kinase and downstream signaling. J Biol Chem 281: 6087–6095.

    CAS  PubMed  Google Scholar 

  • Lu Z, Xu S, Joazeiro C, Cobb MH, Hunter T . (2002). The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell 9: 945–956.

    CAS  PubMed  Google Scholar 

  • Luo W, Ng WW, Jin LH, Ye Z, Han J, Lin SC . (2003). Axin utilizes distinct regions for competitive MEKK1 and MEKK4 binding and JNK activation. J Biol Chem 278: 37451–37458.

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL et al. (2001). Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 98: 2449–2454.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AE, Yaffe MB . (2005). MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell 17: 37–48.

    CAS  PubMed  Google Scholar 

  • Marinissen MJ, Chiariello M, Gutkind JS . (2001). Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway. Genes Dev 15: 535–553.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsubayashi Y, Fukuda M, Nishida E . (2001). Evidence for existence of a nuclear pore complex-mediated, cytosol-independent pathway of nuclear translocation of ERK MAP kinase in permeabilized cells. J Biol Chem 276: 41755–41760.

    CAS  PubMed  Google Scholar 

  • Morrison DK, Davis RJ . (2003). Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19: 91–118.

    CAS  PubMed  Google Scholar 

  • Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, Goldsmith EJ et al. (2006). Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312: 1211–1214.

    CAS  PubMed  Google Scholar 

  • Orth K, Palmer LE, Bao ZQ, Stewart S, Rudolph AE, Bliska JB et al. (1999). Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285: 1920–1923.

    CAS  PubMed  Google Scholar 

  • Parker CG, Hunt J, Diener K, McGinley M, Soriano B, Keesler GA et al. (1998). Identification of stathmin as a novel substrate for p38 delta. Biochem Biophys Res Commun 249: 791–796.

    CAS  PubMed  Google Scholar 

  • Paul S, Nairn AC, Wang P, Lombroso PJ . (2002). NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat Neurosci 6: 34–42.

    Google Scholar 

  • Pearson GW, Earnest S, Cobb MH . (2006). Cyclic AMP selectively uncouples MAP kinase cascades from activating signals. Mol Cell Biol 26: 3039–3047.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranganathan A, Yazicioglu MN, Cobb MH . (2006). The nuclear localization of ERK2 occurs by mechanisms both independent of and dependent on energy. J Biol Chem 281: 15645–15652.

    CAS  PubMed  Google Scholar 

  • Rapp UR, Gotz R, Albert S . (2006). BuCy RAFs drive cells into MEK addiction. Cancer Cell 9: 9–12.

    CAS  PubMed  Google Scholar 

  • Rasar M, DeFranco DB, Hammes SR . (2006). Paxillin regulates steroid-triggered meiotic resumption in oocytes by enhancing an all-or-none positive-feedback kinase loop. J Biol Chem 281: in press.

    Google Scholar 

  • Reszka AA, Seger R, Diltz CD, Krebs EG, Fischer EH . (1995). Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc Natl Acad Sci USA 92: 8881–8885.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson FL, Whitehurst AW, Raman M, Cobb MH . (2002). Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1. J Biol Chem 277: 14844–14852.

    CAS  PubMed  Google Scholar 

  • Roy M, Li Z, Sacks DB . (2004). IQGAP1 binds ERK2 and modulates its activity. J Biol Chem 279: 17329–17337.

    CAS  PubMed  Google Scholar 

  • Rubinfeld H, Hanoch T, Seger R . (1999). Identification of a cytoplasmic-retention sequence in ERK2. J Biol Chem 274: 30349–30352.

    CAS  PubMed  Google Scholar 

  • Sabapathy K, Hochedlinger K, Nam SY, Bauer A, Karin M, Wagner EF . (2004). Distinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferation. Mol Cell 15: 713–725.

    CAS  PubMed  Google Scholar 

  • Salojin KV, Owusu IB, Millerchip KA, Potter M, Platt KA, Oravecz T . (2006). Essential role of MAPK phosphatase-1 in the negative control of innate immune responses. J Immunol 176: 1899–1907.

    CAS  PubMed  Google Scholar 

  • Salmeron A, Ahmad TB, Carlile GW, Pappin D, Narsimhan RP, Ley SC . (1996). Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J 15: 817–826.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz V, Arozarena I, Crespo P . (2000). Distinct carboxy-termini confer divergent characteristics to the mitogen-activated protein kinase p38alpha and its splice isoform Mxi2. FEBS Lett 474: 169–174.

    CAS  PubMed  Google Scholar 

  • Sanz-Moreno V, Casar B, Crespo P . (2003). p38alpha isoform Mxi2 binds to extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase and regulates its nuclear activity by sustaining its phosphorylation levels. Mol Cell Biol 23: 3079–3090.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena M, Mustelin T . (2000). Extracellular signals and scores of phosphatases: all roads lead to MAP kinase. Semin Immunol 12: 387–396.

    CAS  PubMed  Google Scholar 

  • Schoorlemmer J, Goldfarb M . (2002). Fibroblast growth factor homologous factors and the islet brain-2 scaffold protein regulate activation of a stress-activated protein kinase. J Biol Chem 277: 49111–49119.

    CAS  PubMed  Google Scholar 

  • Seternes OM, Johansen B, Hegge B, Johannessen M, Keyse SM, Moens U . (2002). Both binding and activation of p38 mitogen-activated protein kinase (MAPK) play essential roles in regulation of the nucleocytoplasmic distribution of MAPK-activated protein kinase 5 by cellular stress. Mol Cell Biol 22: 6931–6945.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharrocks AD, Yang SH, Galanis A . (2000). Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem Sci 25: 448–453.

    CAS  PubMed  Google Scholar 

  • Shaul YD, Seger R . (2006). ERK1c regulates Golgi fragmentation during mitosis. J Cell Biol 172: 885–897.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sudo T, Yagasaki Y, Hama H, Watanabe N, Osada H . (2002). Exip, a new alternative splicing variant of p38 alpha, can induce an earlier onset of apoptosis in HeLa cells. Biochem Biophys Res Commun 291: 838–843.

    CAS  PubMed  Google Scholar 

  • Takekawa M, Tatebayashi K, Saito H . (2005). Conserved docking site is essential for activation of mammalian MAP kinase kinases by specific MAP kinase kinase kinases. Mol Cell 18: 295–306.

    CAS  PubMed  Google Scholar 

  • Tanoue T, Adachi M, Moriguchi T, Nishida E . (2000). A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2: 110–116.

    CAS  PubMed  Google Scholar 

  • Tanoue T, Maeda R, Adachi M, Nishida E . (2001). Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions. EMBO J 20: 466–479.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tapon N, Nagata K, Lamarche N, Hall A . (1998). A new rac target POSH is an SH3-containing scaffold protein involved in the JNK and NF-kappaB signalling pathways. EMBO J 17: 1395–1404.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teis D, Wunderlich W, Huber LA . (2002). Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev Cell 3: 803–814.

    CAS  PubMed  Google Scholar 

  • Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E . (2004). Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 7: 33–44.

    CAS  PubMed  Google Scholar 

  • Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ . (1999). The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinases. Mol Cell Biol 19: 1569–1581.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda M, Seong KH, Aigaki T . (2006). POSH, a scaffold protein for JNK signaling, binds to ALG-2 and ALIX in Drosophila. FEBS Lett 580: 3296–3300.

    CAS  PubMed  Google Scholar 

  • Uhlik MT, Abell AN, Johnson NL, Sun W, Cuevas BD, Lobel-Rice KE et al. (2003). Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 5: 1104–1110.

    CAS  PubMed  Google Scholar 

  • Wang X, McGowan CH, Zhao M, He L, Downey JS, Fearns C et al. (2000). Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol Cell Biol 20: 4543–4552.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Harkins PC, Ulevitch RJ, Han J, Cobb MH, Goldsmith EJ . (1997). The structure of mitogen-activated protein kinase p38 at 2.1-Å resolution. Proc Natl Acad Sci USA 94: 2327–2332.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehurst AW, Robinson FL, Moore MS, Cobb MH . (2004). The death effector domain protein PEA-15 prevents nuclear entry of ERK2 by inhibiting required interactions. J Biol Chem 279: 12840–12847.

    CAS  PubMed  Google Scholar 

  • Whitehurst AW, Wilsbacher JL, You Y, Luby-Phelps K, Moore MS, Cobb MH . (2002). ERK2 enters the nucleus by a carrier-independent mechanism. Proc Natl Acad Sci U S A 99: 7496–7501.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ . (1998). A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 281: 1671–1674.

    CAS  PubMed  Google Scholar 

  • Wilson KP, Fitzgibbon MJ, Caron PR, Griffith JP, Chen W, McCaffrey PG et al. (1996). Crystal structure of p38 mitogen-activated protein kinase. J Biol Chem 271: 27696–27700.

    CAS  PubMed  Google Scholar 

  • Witowsky JA, Johnson GL . (2003). Ubiquitylation of MEKK1 inhibits its phosphorylation of MKK1 and MKK4 and activation of the ERK1/2 and JNK pathways. J Biol Chem 278: 1403–1406.

    CAS  PubMed  Google Scholar 

  • Wu JJ, Roth RJ, Anderson EJ, Hong EG, Lee MK, Choi CS et al. (2006). Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab 4: 61–73.

    CAS  PubMed  Google Scholar 

  • Xia Y, Wu Z, Su B, Murray B, Karin M . (1998). JNKK1 organizes a MAP kinase module through specific and sequential interactions with upstream and downstream components mediated by its amino-terminal extension. Genes Dev 12: 3369–3381.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Cobb MH . (1997). MEKK1 binds directly to the c-Jun N-terminal kinases stress-activated protein kinases. J Biol Chem 272: 32056–32060.

    CAS  PubMed  Google Scholar 

  • Xu Z, Kukekov NV, Greene LA . (2003). POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis. EMBO J 22: 252–261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yagasaki Y, Sudo T, Osada H . (2004). Exip, a splicing variant of p38alpha, participates in interleukin-1 receptor proximal complex and downregulates NF-kappaB pathway. FEBS Lett 575: 136–140.

    CAS  PubMed  Google Scholar 

  • Yamaguchi T, Nagao S, Wallace DP, Belibi FA, Cowley BD, Pelling JC et al. (2003). Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys. Kidney Int 63: 1983–1994.

    CAS  PubMed  Google Scholar 

  • Yoon S, Seger R . (2006). The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors 24: 21–44.

    CAS  PubMed  Google Scholar 

  • Yung Y, Yao Z, Aebersold DM, Hanoch T, Seger R . (2001). Altered regulation of ERK1b by MEK1 and PTP-SL and modified Elk1 phosphorylation by ERK1b are caused by abrogation of the regulatory C-terminal sequence of ERKs. J Biol Chem 276: 35280–35289.

    CAS  PubMed  Google Scholar 

  • Zervos AS, Faccio L, Gatto JP, Kyriakis JM, Brent R . (1995). Mxi2, a mitogen-activated protein kinase that recognizes and phosphorylates Max protein. Proc Natl Acad Sci USA 92: 10531–10534.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Shi X, Hampong M, Blanis L, Pelech S . (2001). Stress-induced inhibition of ERK1 and ERK2 by direct interaction with p38 MAP kinase. J Biol Chem 276: 6905–6908.

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhou B, Zheng CF, Zhang ZY . (2003). A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates. J Biol Chem 278: 29901–29912.

    CAS  PubMed  Google Scholar 

  • Zhang Y, Neo SY, Wang X, Han J, Lin SC . (1999). Axin forms a complex with MEKK1 and activates c-Jun NH(2)-terminal Kinase/Stress-activated protein kinase through domains distinct from wnt signaling. J Biol Chem 274: 35247–35254.

    CAS  PubMed  Google Scholar 

  • Zhou B, Zhang J, Liu S, Reddy S, Wang F, Zhang ZY . (2006a). Mapping ERK2-MKP3 binding interfaces by hydrogen/deuterium exchange mass spectrometry. J Biol Chem 281: 38834–38844.

    CAS  PubMed  Google Scholar 

  • Zhou G, Boomer JS, Tan TH . (2004). Protein phosphatase 4 is a positive regulator of hematopoietic progenitor kinase 1. J Biol Chem 279: 49551–49561.

    CAS  PubMed  Google Scholar 

  • Zhou T, Sun L, Humphreys J, Goldsmith EJ . (2006b). Docking interactions induce exposure of activation loop in the MAP kinase ERK2. Structure 14: 1011–1019.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kyle Wedin, Arif Jivan and Daryl Goad for comments on the manuscript and Dionne Ware for administrative experience. Work from the authors' laboratory was supported by NIH grants DK34128, GM56498 and GM53032, and grant I1243 from the Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M H Cobb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raman, M., Chen, W. & Cobb, M. Differential regulation and properties of MAPKs. Oncogene 26, 3100–3112 (2007). https://doi.org/10.1038/sj.onc.1210392

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210392

Keywords

This article is cited by

Search

Quick links