Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Checkpoint adaptation in human cells

Abstract

Checkpoint adaptation was originally described in Saccharomyces Cerevisiae as the ability to divide following a sustained checkpoint arrest in the presence of unrepairable DNA breaks. A process of checkpoint adaptation was also reported in Xenopus in response to the replication inhibitor aphidicolin. Recently, we showed that checkpoint adaptation also occurs in human cells. Although cells undergoing checkpoint adaptation will frequently die in subsequent cell cycles owing to excessive DNA damage, some of the cells may be able to survive and proliferate with damaged DNA. Thus, checkpoint adaptation in human cells may potentially promote genomic instability and lead to cancer. Here, I discuss the current evidence for checkpoint adaptation in human cells and possible mechanisms and implications of this phenomenon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Arnaud L, Pines J, Nigg EA . (1998). GFP tagging reveals human Polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma 107: 424–429.

    Article  CAS  Google Scholar 

  • Brown JM, Attardi LD . (2005). The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5: 231–237.

    Article  CAS  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown J et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  Google Scholar 

  • Carballo JA, Pincheira J, de la Torre C . (2006). The G2 checkpoint activated by DNA damage does not prevent genome instability in plant cells. Biol Res 39: 331–340.

    Article  CAS  Google Scholar 

  • Chen Y, Sanchez Y . (2004). Chk1 in the DNA damage response: conserved roles from yeasts to mammals. DNA Repair (Amst) 3: 1025–1032.

    Article  CAS  Google Scholar 

  • Chu K, Leonhardt EA, Trinh M, Prieur-Carrillo G, Lindqvist J, Albright N et al. (2002). Computerized video time-lapse (CVTL) analysis of cell death kinetics in human bladder carcinoma cells (EJ30) X-irradiated in different phases of the cell cycle. Radiat Res 158: 667–677.

    Article  CAS  Google Scholar 

  • De Souza CP, Ellem KA, Gabrielli BG . (2000). Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events. Exp Cell Res 257: 11–21.

    Article  CAS  Google Scholar 

  • den Elzen N, Kosoy A, Christopoulos H, O'Connell MJ . (2004). Resisting arrest: recovery from checkpoint arrest through dephosphorylation of Chk1 by PP1. Cell Cycle 3: 529–533.

    CAS  PubMed  Google Scholar 

  • Dewey WC, Ling CC, Meyn RE . (1995). Radiation-induced apoptosis: relevance to radiotherapy. Int J Radiat Oncol Biol Phys 33: 781–796.

    Article  CAS  Google Scholar 

  • Forand A, Dutrillaux B, Bernardino-Sgherri J . (2004). Gamma-H2AX expression pattern in non-irradiated neonatal mouse germ cells and after low-dose gamma-radiation: relationships between chromatid breaks and DNA double-strand breaks. Biol Reprod 71: 643–649.

    Article  CAS  Google Scholar 

  • Forrester HB, Albright N, Ling CC, Dewey WC . (2000). Computerized video time-lapse analysis of apoptosis of REC:Myc cells X-irradiated in different phases of the cell cycle. Radiat Res 154: 625–639.

    Article  CAS  Google Scholar 

  • Friedberg EC, Wagner R, Radman M . (2002). Specialized DNA polymerases, cellular survival, and the genesis of mutations. Science 296: 1627–1630.

    Article  CAS  Google Scholar 

  • Furuno N, den Elzen N, Pines J . (1999). Human cyclin A is required for mitosis until mid prophase. J Cell Biol 147: 295–306.

    Article  CAS  Google Scholar 

  • Galgoczy DJ, Toczyski DP . (2001). Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast. Mol Cell Biol 21: 1710–1718.

    Article  CAS  Google Scholar 

  • Hall EJ, Giaccia AJ . (2006). Radiobiology for the Radiologist 6th ed. Lippincott Williams & Wilkins: Philadelphia.

    Google Scholar 

  • Harrison JC, Haber JE . (2006). Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40: 209–235.

    Article  CAS  Google Scholar 

  • Ianzini F, Mackey MA . (1997). Spontaneous premature chromosome condensation and mitotic catastrophe following irradiation of HeLa S3 cells. Int J Radiat Biol 72: 409–421.

    Article  CAS  Google Scholar 

  • Jonathan EC, Bernhard EJ, McKenna WG . (1999). How does radiation kill cells? Curr Opin Chem Biol 3: 77–83.

    Article  CAS  Google Scholar 

  • Kao GD, McKenna WG, Maity A, Blank K, Muschel RJ . (1997). Cyclin B1 availability is a rate-limiting component of the radiation-induced G2 delay in HeLa cells. Cancer Res 57: 753–758.

    CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J . (2004). Cell-cycle checkpoints and cancer. Nature 432: 316–323.

    Article  CAS  Google Scholar 

  • Kim SM, Kumagai A, Lee J, Dunphy WG . (2005). Phosphorylation of Chk1 by ATM- and Rad3-related (ATR) in Xenopus egg extracts requires binding of ATRIP to ATR but not the stable DNA-binding or coiled-coil domains of ATRIP. J Biol Chem 280: 38355–38364.

    Article  CAS  Google Scholar 

  • Klokov D, MacPhail SM, Banath JP, Byrne JP, Olive PL . (2006). Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays. Radiother Oncol 80: 223–229.

    Article  CAS  Google Scholar 

  • Koniaras K, Cuddihy A, Christopoulos H, Hogg A, O'Connell M . (2001). Inhibition of Chk1-dependent G2 DNA damage checkpoint radiosensitizes p53 mutant human cells. Oncogene 20: 7453–7463.

    Article  CAS  Google Scholar 

  • Kramer A, Mailand N, Lukas C, SyljuĂ„sen RG, Wilkinson CJ, Nigg EA et al. (2004). Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 6: 884–891.

    Article  Google Scholar 

  • Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE . (1998). Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94: 399–409.

    Article  CAS  Google Scholar 

  • Lee SE, Pellicioli A, Malkova A, Foiani M, Haber JE . (2001). The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break. Curr Biol 11: 1053–1057.

    Article  CAS  Google Scholar 

  • Lee SE, Pellicioli A, Vaze MB, Sugawara N, Malkova A, Foiani M et al. (2003). Yeast Rad52 and Rad51 recombination proteins define a second pathway of DNA damage assessment in response to a single double-strand break. Mol Cell Biol 23: 8913–8923.

    Article  CAS  Google Scholar 

  • Leroy C, Lee SE, Vaze MB, Ochsenbien F, Guerois R, Haber JE et al. (2003). PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol Cell 11: 827–835.

    Article  CAS  Google Scholar 

  • Lin SY, Li K, Stewart GS, Elledge SJ . (2004). Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation. Proc Natl Acad Sci USA 101: 6484–6489.

    Article  CAS  Google Scholar 

  • Linke SP, Clarkin KC, Wahl GM . (1997). p53 mediates permanent arrest over multiple cell cycles in response to gamma-irradiation. Cancer Res 57: 1171–1179.

    CAS  PubMed  Google Scholar 

  • Loffler H, Lukas J, Bartek J, Kramer A . (2006). Structure meets function – centrosomes, genome maintenance and the DNA damage response. Exp Cell Res 312: 2633–2640.

    Article  Google Scholar 

  • Lu C, Zhu F, Cho Y, Tang F, Zykova T, Ma W et al. (2006). Cell apoptosis: requirement of H2AX in DNA ladder formation, but not for the activation of caspase-3. Mol Cell 23: 121–132.

    Article  CAS  Google Scholar 

  • Lu X, Nannenga B, Donehower LA . (2005). PPM1D dephosphorylates Chk1 and p53 and abrogates cell cycle checkpoints. Genes Dev 19: 1162–1174.

    Article  CAS  Google Scholar 

  • Lupardus PJ, Cimprich KA . (2004). Checkpoint adaptation; molecular mechanisms uncovered. Cell 117: 555–556.

    Article  CAS  Google Scholar 

  • Mailand N, Bekker-Jensen S, Bartek J, Lukas J . (2006). Destruction of Claspin by SCFbetaTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol Cell 23: 307–318.

    Article  CAS  Google Scholar 

  • Maity A, Hwang A, Janss A, Phillips P, McKenna WG, Muschel RJ . (1996). Delayed cyclin B1 expression during the G2 arrest following DNA damage. Oncogene 13: 1647–1657.

    CAS  PubMed  Google Scholar 

  • Mamely I, van Vugt MA, Smits VA, Semple JI, Lemmens B, Perrakis A et al. (2006). Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol 16: 1950–1955.

    Article  CAS  Google Scholar 

  • Matsuoka S, Huang M, Elledge SJ . (1998). Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282: 1893–1897.

    Article  CAS  Google Scholar 

  • Muschel RJ, Zhang HB, Iliakis G, McKenna WG . (1992). Effects of ionizing radiation on cyclin expression in HeLa cells. Radiat Res 132: 153–157.

    Article  CAS  Google Scholar 

  • Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE . (2001). Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 7: 293–300.

    Article  CAS  Google Scholar 

  • Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T, Sherman NE et al. (2006). SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol Cell 23: 319–329.

    Article  CAS  Google Scholar 

  • Rothkamm K, Kruger I, Thompson LH, Lobrich M . (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23: 5706–5715.

    Article  CAS  Google Scholar 

  • Rothkamm K, Lobrich M . (2003). Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 100: 5057–5062.

    Article  CAS  Google Scholar 

  • Sandell LL, Zakian VA . (1993). Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75: 729–739.

    Article  CAS  Google Scholar 

  • Suzuki M, Suzuki K, Kodama S, Watanabe M . (2006). Phosphorylated histone H2AX foci persist on rejoined mitotic chromosomes in normal human diploid cells exposed to ionizing radiation. Radiat Res 165: 269–276.

    Article  CAS  Google Scholar 

  • SyljuĂ„sen RG, Jensen S, Bartek J, Lukas J . (2006). Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res 66: 10253–10257.

    Article  Google Scholar 

  • Takizawa CG, Morgan DO . (2000). Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol 12: 658–665.

    Article  CAS  Google Scholar 

  • Thompson LH, Suit HD . (1969). Proliferation kinetics of x-irradiated mouse L cells studied with time-lapse photography. II. Int J Radiat Biol Relat Stud Phys Chem Med 15: 347–362.

    Article  CAS  Google Scholar 

  • Toczyski DP, Galgoczy DJ, Hartwell LH . (1997). CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90: 1097–1106.

    Article  CAS  Google Scholar 

  • van Vugt MA, Bras A, Medema RH . (2004). Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell 15: 799–811.

    Article  CAS  Google Scholar 

  • van Vugt MA, Bras A, Medema RH . (2005). Restarting the cell cycle when the checkpoint comes to a halt. Cancer Res 65: 7037–7040.

    Article  CAS  Google Scholar 

  • Yoo HY, Jeong SY, Dunphy WG . (2006). Site-specific phosphorylation of a checkpoint mediator protein controls its responses to different DNA structures. Genes Dev 20: 772–783.

    Article  CAS  Google Scholar 

  • Yoo HY, Kumagai A, Shevchenko A, Shevchenko A, Dunphy WG . (2004). Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell 117: 575–588.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Danish National Research Foundation, the Danish Cancer Society and the Danish Medical Research Council. The author thanks Jiri Lukas for critical reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R G SyljuÄsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SyljuĂ„sen, R. Checkpoint adaptation in human cells. Oncogene 26, 5833–5839 (2007). https://doi.org/10.1038/sj.onc.1210402

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210402

Keywords

This article is cited by

Search

Quick links