Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

RB1 and TP53 pathways in radiation-induced sarcomas

Abstract

The tumour suppressor genes, TP53 and RB1, and four genes involved in their regulation, INK4a, ARF, MDM2 and MDMX, were analysed in a series of 36 post-radiotherapy radiation-induced sarcomas. One-third of the tumours developed in patients carrying a germline mutation of RB1 that predisposed them to retinoblastoma and radiation-induced sarcomas. The genetic inactivation of RB1 and/or TP53 genes was frequently observed in these sarcomas. These inactivations were owing to an interplay between point mutations and losses of large chromosome segments. Radiation-induced somatic mutations were observed in TP53, but not in RB1 or in the four other genes, indicating an early role of TP53 in the radio-sarcomagenesis. RB1 and TP53 genes were biallelically coinactivated in all sarcomas developing in the context of the predisposition, indicating that both genes played a major role in the formation of these sarcomas. In the absence of predisposition, TP53 was biallelically inactivated in one-third of the sarcomas, whereas at least one allele of RB1 was wild type. In both genetic contexts, the TP53 pathway was inactivated by genetic lesions and not by the activation of the ARF/MDM2/MDMX pathway, as recently shown in retinoblastomas. Together, these findings highlight the intricate tissue- and aetiology-specific relationships between TP53 and RB1 pathways in tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Aerts I, Pacquement H, Doz F, Mosseri V, Desjardins L, Sastre X et al. (2004). Outcome of second malignancies after retinoblastoma: a retrospective analysis of 25 patients treated at the Institut Curie. Eur J Cancer 40: 1522–1529.

    Article  PubMed  Google Scholar 

  • Chatterjee SJ, George B, Goebell PJ, Alavi-Tafreshi M, Shi SR, Fung YK et al. (2004). Hyperphosphorylation of pRb: a mechanism for RB tumour suppressor pathway inactivation in bladder cancer. J Pathol 203: 762–770.

    Article  CAS  PubMed  Google Scholar 

  • Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R et al. (2004). Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24: 5835–5843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonin-Laurent N, Gibaud A, Huygue M, Lefevre SH, Le Bras M, Chauveinc L et al. (2006). Specific TP53 mutation pattern in radiation-induced sarcomas. Carcinogenesis 27: 1266–1272.

    Article  CAS  PubMed  Google Scholar 

  • Goodrich DW . (2006). The retinoblastoma tumor-suppressor gene, the exception that proves the rule. Oncogene 25: 5233–5243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houdayer C, Gauthier-Villars M, Lauge A, Pages-Berhouet S, Dehainault C, Caux-Moncoutier V et al. (2004). Comprehensive screening for constitutional RB1 mutations by DHPLC and QMPSF. Hum Mutat 23: 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Kato MV, Shimizu T, Ishizaki K, Kaneko A, Yandell DW, Toguchida J et al. (1996). Loss of heterozygosity on chromosome 17 and mutation of the p53 gene in retinoblastoma. Cancer Lett 106: 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi K, Oda Y, Saito T, Yamamoto H, Takahira T, Kobayashi C et al. (2006). DNA hypermethylation status of multiple genes in soft tissue sarcomas. Mod Pathol 19: 106–114.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi K, Oda Y, Saito T, Yamamoto H, Tamiya S, Takahira T et al. (2003). Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decreased p16 expression correlates with promoter methylation and poor prognosis. J Pathol 201: 487–495.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi K, Oda Y, Sakamoto A, Saito T, Tamiya S, Iwamoto Y et al. (2002). Molecular analysis of p53, MDM2, and H-ras genes in osteosarcoma and malignant fibrous histiocytoma of bone in patients older than 40 years. Mod Pathol 15: 878–888.

    Article  PubMed  Google Scholar 

  • Kleinerman RA, Tucker MA, Tarone RE, Abramson DH, Seddon JM, Stovall M et al. (2005). Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: an extended follow-up. J Clin Oncol 23: 2272–2279.

    Article  PubMed  Google Scholar 

  • Knudson AG . (2001). Two genetic hits (more or less) to cancer. Nat Rev Cancer 1: 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C et al. (2006). Inactivation of the p53 pathway in retinoblastoma. Nature 444: 61–66.

    Article  CAS  PubMed  Google Scholar 

  • Lavin MF, Gueven N . (2006). The complexity of p53 stabilization and activation. Cell Death Differ 13: 941–950.

    Article  CAS  PubMed  Google Scholar 

  • Lefèvre SH, Vogt N, Dutrillaux AM, Chauveinc L, Stoppa-Lyonnet D, Doz F et al. (2001). Genome instability in secondary solid tumors developing after radiotherapy of bilateral retinoblastoma. Oncogene 20: 8092–8099.

    Article  PubMed  Google Scholar 

  • Marine JC, Jochemsen AG . (2004). Mdmx and Mdm2: brothers in arms? Cell Cycle 3: 900–904.

    Article  CAS  PubMed  Google Scholar 

  • Menu-Branthomme A, Rubino C, Shamsaldin A, Hawkins MM, Grimaud E, Dondon MG et al. (2004). Radiation dose, chemotherapy and risk of soft tissue sarcoma after solid tumours during childhood. Int J Cancer 110: 87–93.

    Article  CAS  PubMed  Google Scholar 

  • Miller CW, Aslo A, Won A, Tan M, Lampkin B, Koeffler HP . (1996). Alterations of the p53, Rb and MDM2 genes in osteosarcoma. J Cancer Res Clin Oncol 122: 559–565.

    Article  CAS  PubMed  Google Scholar 

  • Moysich KB, Menezes RJ, Michalek AM . (2002). Chernobyl-related ionising radiation exposure and cancer risk: an epidemiological review. Lancet Oncol 3: 269–279.

    Article  PubMed  Google Scholar 

  • Patino-Garcia A, Sierrasesumaga L . (1997). Analysis of the p16INK4 and TP53 tumor suppressor genes in bone sarcoma pediatric patients. Cancer Genet Cytogenet 98: 50–55.

    Article  CAS  PubMed  Google Scholar 

  • Perucca-Lostanlen D, Rostagno P, Grosgeorge J, Marcie S, Gaudray P, Turc-Carel C . (2004). Distinct MDM2 and P14ARF expression and centrosome amplification in well-differentiated liposarcomas. Genes Chromosomes Cancer 39: 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Ramos YF, Stad R, Attema J, Peltenburg LT, van der Eb AJ, Jochemsen AG . (2001). Aberrant expression of HDMX proteins in tumor cells correlates with wild-type p53. Cancer Res 61: 1839–1842.

    CAS  PubMed  Google Scholar 

  • Sartor M, Steingrimsdottir H, Elamin F, Gaken J, Warnakulasuriya S, Partridge M et al. (1999). Role of p16/MTS1, cyclin D1 and RB in primary oral cancer and oral cancer cell lines. Br J Cancer 80: 79–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharpless NE . (2005). INK4a/ARF: a multifunctional tumor suppressor locus. Mutat Res 576: 22–38.

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Liloglou T, Rogers SN, Brown JS, Vaughan ED, Lowe D et al. (2006). Promoter methylation of P16, RARbeta, E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing. Br J Cancer 94: 561–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo F, Wahl GM . (2006). Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6: 909–923.

    Article  CAS  PubMed  Google Scholar 

  • Travis LB . (2002). Therapy-associated solid tumors. Acta Oncol 41: 323–333.

    Article  PubMed  Google Scholar 

  • Tsuchiya T, Sekine K, Hinohara S, Namiki T, Nobori T, Kaneko Y . (2000). Analysis of the p16INK4, p14ARF, p15, TP53, and MDM2 genes and their prognostic implications in osteosarcoma and Ewing sarcoma. Cancer Genet Cytogenet 120: 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Wakeford R . (2004). The cancer epidemiology of radiation. Oncogene 23: 6404–6428.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N G-L was a fellow of the Ministère de l'Education Nationale et de la Recherche and of the Association pour la Recherche contre le Cancer (ARC). Supported by: Institut Curie-CEA ‘Programme Incitatif et Coopératif Instabilité génétique et radiorésistance des tumeurs’; Institut Curie ‘Programme Incitatif et Coopératif Rétinoblastome’; Electricité de France (RB2005–10); CEA (LRC38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Malfoy.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonin-Laurent, N., Hadj-Hamou, N., Vogt, N. et al. RB1 and TP53 pathways in radiation-induced sarcomas. Oncogene 26, 6106–6112 (2007). https://doi.org/10.1038/sj.onc.1210404

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210404

Keywords

This article is cited by

Search

Quick links