Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Overexpression of a transcription factor LYL1 induces T- and B-cell lymphoma in mice

Abstract

LYL1, a member of the class II basic helix–loop–helix transcription factors, is aberrantly expressed in a fraction of human T-cell acute lymphoblastic leukemia. Here, we generated transgenic mice ubiquitously overexpressing LYL1 using a construct expressing full-length cDNA driven by a human elongation factor 1α promoter. Four independent lines exhibiting high LYL1 expression were established. Of these transgenic mice, 96% displayed loss of hair with a short kinked tail. Furthermore, 30% of them developed malignant lymphoma, with an average latent period of 352 days. In these mice, histological examination revealed tumor cell infiltration in multiple organs and immunohistochemical analysis showed that the infiltrated tumor cells were either CD3 or CD45R/B220-positive; fluorescence-activated cell sorter analysis indicated that each tumor consisted either of mainly CD4, CD8 double-positive T cells or mature B cells; the clonality of LYL1-induced lymphoma was confirmed by T-cell receptor rearrangement and immunoglobulin heavy-chain gene rearrangement analyses. Mammalian two-hybrid analysis and luciferase assay suggested that excess LYL1 blocked the dimerization of E2A and thus inhibited the regulatory activity of E2A on the CD4 promoter. Reverse transcription-polymerase chain reaction results showed that the expression of certain E2A/HEB target genes was downregulated. Taken together, our results provide direct evidence that aberrant expression of LYL1 plays a role in lymphomagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

ALL:

acute lymphoblastic leukemia

AML:

acute myeloblastic leukemia

bHLH:

basic helix–loop–helix

CAT:

chloramphenicol acetyltransferase

EF-1α:

human elongation factor 1α

GBD:

Gal4 DNA-binding domain

HDAC:

histone deacetylase

LMO:

LIM-domain-only

MDS:

myelodysplastic syndrome

RT−PCR:

reverse transcription-polymerase chain reaction

TCR:

T-cell receptor

VAD:

VP16-activation domain

References

  • Aplan PD, Jones CA, Chervinsky DS, Zhao X, Ellsworth M, Wu C . (1997). An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. EMBO J 16: 2408–2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baer R . (1993). TAL1, TAL2 and LYL1: a family of basic helix–loop–helix proteins implicated in T cell acute leukaemia. Semin Cancer Biol 4: 341–347.

    CAS  PubMed  Google Scholar 

  • Bain G, Engel I, Robanus Maandag EC, te Riele HP, Voland JR, Sharp LL . (1997). E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 17: 4782–4791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begley CG, Green AR . (1999). The SCL gene: from case report to critical hematopoietic regulator. Blood 93: 2760–2770.

    CAS  PubMed  Google Scholar 

  • Chervinsky DS, Zhao XF, Lam DH, Ellsworth M, Gross KW, Aplan PD . (1999). Disordered T-cell development and T-cell malignancies in SCL LMO1 double-transgenic mice: parallels with E2A-deficient mice. Mol Cell Biol 19: 5025–5035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condorelli GL, Facchiano F, Valtieri M, Proietti E, Vitelli L, Lulli V . (1996). T-cell-directed TAL-1 expression induces T-cell malignancies in transgenic mice. Cancer Res 56: 5113–5119.

    CAS  PubMed  Google Scholar 

  • Dolcet X, Llobet D, Pallares J, Matias-Guiu X . (2005). NF-kB in development and progression of human cancer. Virchows Arch 446: 475–482.

    Article  CAS  PubMed  Google Scholar 

  • Ferrando AA, Look AT . (2003). Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol 40: 274–280.

    Article  CAS  PubMed  Google Scholar 

  • Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC . (2002). Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1: 75–87.

    Article  CAS  PubMed  Google Scholar 

  • Ferrier R, Nougarede R, Doucet S, Kahn-Perles B, Imbert J, Mathieu-Mahul D . (1999). Physical interaction of the bHLH LYL1 protein and NF-kappaB1 p105. Oncogene 18: 995–1005.

    Article  CAS  PubMed  Google Scholar 

  • Gilmore TD, Koedood M, Piffat KA, White DW . (1996). Rel/NF-kappaB/IkappaB proteins and cancer. Oncogene 13: 1367–1378.

    CAS  PubMed  Google Scholar 

  • Herblot S, Steff AM, Hugo P, Aplan PD, Hoang T . (2000). SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol 1: 138–144.

    Article  CAS  PubMed  Google Scholar 

  • Hjalt T . (2004). Basic helix–loop–helix proteins expressed during early embryonic organogenesis. Int Rev Cytol 236: 251–280.

    Article  CAS  PubMed  Google Scholar 

  • Hsu HL, Wadman I, Baer R . (1994). Formation of in vivo complexes between the TAL1 and E2A polypeptides of leukemic T cells. Proc Natl Acad Sci USA 91: 3181–3185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones S . (2004). An overview of the basic helix–loop–helix proteins. Genome Biol 5: 226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo SS, Mellentin JD, Copeland NG, Gilbert DJ, Jenkins NA, Cleary ML . (1991). Structure, chromosome mapping, and expression of the mouse Lyl-1 gene. Oncogene 6: 961–968.

    CAS  PubMed  Google Scholar 

  • Larson RC, Lavenir I, Larson TA, Baer R, Warren AJ, Wadman I . (1996). Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J 15: 1021–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson RC, Osada H, Larson TA, Lavenir I, Rabbitts TH . (1995). The oncogenic LIM protein Rbtn2 causes thymic developmental aberrations that precede malignancy in transgenic mice. Oncogene 11: 853–862.

    CAS  PubMed  Google Scholar 

  • Lazorchak A, Jones ME, Zhuang Y . (2005). New insights into E-protein function in lymphocyte development. Trends Immunol 26: 334–338.

    Article  CAS  PubMed  Google Scholar 

  • Malissen M, Minard K, Mjolsness S, Kronenberg M, Goverman J, Hunkapiller T . (1984). Mouse T cell antigen receptor: structure and organization of constant and joining gene segments encoding the beta polypeptide. Cell 37: 1101–1110.

    Article  CAS  PubMed  Google Scholar 

  • Massari ME, Murre C . (2000). Helix–loop–helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20: 429–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellentin JD, Smith SD, Cleary ML . (1989). lyl-1, A novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix–loop–helix DNA binding motif. Cell 58: 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Meng YS, Khoury H, Dick JE, Minden MD . (2005). Oncogenic potential of the transcription factor LYL1 in acute myeloblastic leukemia. Leukemia 19: 1941–1947.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto A, Cui X, Naumovski L, Cleary ML . (1996). Helix–loop–helix proteins LYL1 and E2a form heterodimeric complexes with distinctive DNA-binding properties in hematolymphoid cells. Mol Cell Biol 16: 2394–2401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima S, Nagata S . (1990). pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res 18: 5322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murre C, Bain G, van Dijk MA, Engel I, Furnari BA, Massari ME . (1994). Structure and function of helix–loop–helix proteins. Biochim Biophys Acta 1218: 129–135.

    Article  CAS  PubMed  Google Scholar 

  • Murre C . (2005). Helix–loop–helix proteins and lymphocyte development. Nat Immunol 6: 1079–1086.

    Article  CAS  PubMed  Google Scholar 

  • O'Neil J, Shank J, Cusson N, Murre C, Kelliher M . (2004). TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 5: 587–596.

    Article  CAS  PubMed  Google Scholar 

  • Robb L, Lyons I, Li R, Hartley L, Kontgen F, Harvey RP . (1995). Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA 92: 7075–7079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakano H, Maki R, Kurosawa Y, Roeder W, Tonegawa S . (1980). Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature 286: 676–683.

    Article  CAS  PubMed  Google Scholar 

  • Sawada S, Littman DR . (1993). A heterodimer of HEB and an E12-related protein interacts with the CD4 enhancer and regulates its activity in T-cell lines. Mol Cell Biol 13: 5620–5628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivdasani RA, Mayer EL, Orkin SH . (1995). Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373: 432–434.

    Article  CAS  PubMed  Google Scholar 

  • Toyokuni S, Kawaguchi W, Akatsuka S, Hiroyasu M, Hiai H . (2003). Intermittent microwave irradiation facilitates antigen–antibody reaction in western blot analysis. Pathol Int 53: 259–261.

    Article  PubMed  Google Scholar 

  • Toyokuni S, Tanaka T, Hattori Y, Nishiyama Y, Yoshida A, Uchida K . (1997). Quantitative immunohistochemical determination of 8-hydroxy-2′-deoxyguanosine by a monoclonal antibody N45.1: its application to ferric nitrilotriacetate-induced renal carcinogenesis model. Lab Invest 76: 365–374.

    CAS  PubMed  Google Scholar 

  • van Dongen JJ, Wolvers-Tettero IL . (1991). Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta 198: 1–91.

    Article  CAS  PubMed  Google Scholar 

  • Visvader J, Begley CG, Adams JM . (1991). Differential expression of the LYL, SCL and E2A helix–loop–helix genes within the hemopoietic system. Oncogene 6: 187–194.

    CAS  PubMed  Google Scholar 

  • Wadman I, Li J, Bash RO, Forster A, Osada H, Rabbitts TH . (1994). Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J 13: 4831–4839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilm B, Dahl E, Peters H, Balling R, Imai K . (1998). Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency. Proc Natl Acad Sci USA 95: 8692–8697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson V, Conlon FL . (2002). The T-box family. Genome Biol 3. REVIEWS3008.

  • Xia Y, Brown L, Yang CY, Tsan JT, Siciliano MJ, Espinosa III R . (1991). TAL2, a helix–loop–helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci USA 88: 11416–11420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Hwang LY, Cobb MH, Baer R . (1994). Products of the TAL2 oncogene in leukemic T cells: bHLH phosphoproteins with DNA-binding activity. Oncogene 9: 1437–1446.

    CAS  PubMed  Google Scholar 

  • Yan W, Young AZ, Soares VC, Kelley R, Benezra R, Zhuang Y . (1997). High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol 17: 7317–7327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Robert E Kingston (Department of Molecular Biology, Massachusetts General Hospital) for providing the HEB cDNA clone. We thank Ms Hiroko Saito and Mr Haruyasu Kohda for their expert technical assistance. We also thank Dr Jun Fan for helpful suggestions. This work was supported in part by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology and by a grant from the Inamori Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Y., Jiang, L., Hiai, H. et al. Overexpression of a transcription factor LYL1 induces T- and B-cell lymphoma in mice. Oncogene 26, 6937–6947 (2007). https://doi.org/10.1038/sj.onc.1210494

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210494

Keywords

This article is cited by

Search

Quick links