Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data

Abstract

Identifying genes, whose expression is consistently altered by chromosomal gains or losses, is an important step in defining genes of biological relevance in a wide variety of tumour types. However, additional criteria are needed to discriminate further among the large number of candidate genes identified. This is particularly true for neuroblastoma, where multiple genomic copy number changes of proven prognostic value exist. We have used Affymetrix microarrays and a combination of fluorescent in situ hybridization and single nucleotide polymorphism (SNP) microarrays to establish expression profiles and delineate copy number alterations in 30 primary neuroblastomas. Correlation of microarray data with patient survival and analysis of expression within rodent neuroblastoma cell lines were then used to define further genes likely to be involved in the disease process. Using this approach, we identify >1000 genes within eight recurrent genomic alterations (loss of 1p, 3p, 4p, 10q and 11q, 2p gain, 17q gain, and the MYCN amplicon) whose expression is consistently altered by copy number change. Of these, 84 correlate with patient survival, with the minimal regions of 17q gain and 4p loss being enriched significantly for such genes. These include genes involved in RNA and DNA metabolism, and apoptosis. Orthologues of all but one of these genes on 17q are overexpressed in rodent neuroblastoma cell lines. A significant excess of SNPs whose copy number correlates with survival is also observed on proximal 4p in stage 4 tumours, and we find that deletion of 4p is associated with improved outcome in an extended cohort of tumours. These results define the major impact of genomic copy number alterations upon transcription within neuroblastoma, and highlight genes on distal 17q and proximal 4p for downstream analyses. They also suggest that integration of discriminators, such as survival and comparative gene expression, with microarray data may be useful in the identification of critical genes within regions of loss or gain in many human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ambros PF, Ambros IM . (2001). SIOP Europe Neuroblastoma Pathology, Biology, and Bone Marrow Group. Pathology and biology guidelines for resectable and unresectable neuroblastic tumors and bone marrow examination guidelines. Med Pediatr Oncol 37: 492–504.

    Article  CAS  Google Scholar 

  • Asgharzadeh S, Pigue-Regi R, Sposto R, Wang H, Yang Y, Shimada H et al. (2006). Prognostic significance of gene expression profiles of metastatic neuroblastomas lacking MYCN gene amplification. J Natl Cancer Inst 98: 1193–1203.

    Article  CAS  Google Scholar 

  • Attiyeh EF, London WB, Mossé YP, Wang O, Winter C, Khazi D et al. (2005). Chromosome 1p and 11q deletions and outcome in neuroblastoma. New Eng J Med 353: 2243–2253.

    Article  CAS  Google Scholar 

  • Bown N, Cotterill S, Lastowska M, O'Neill S, Pearson ADJ, Nicholson J et al. (1999). Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. New Eng J Med 340: 1954–1961.

    Article  CAS  Google Scholar 

  • Bown N, Reid MM, Malcolm A, Davison EV, Craft AW, Pearson ADJ . (1994). Cytogenetic abnormalities of small round cell tumours. Med Pediatr Oncol 23: 124–129.

    Article  CAS  Google Scholar 

  • Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP et al. (1993). Revision of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 11: 1466–1477.

    Article  CAS  Google Scholar 

  • Bussey KJ, Chin K, Lababidi S, Reimers M, Reinhold WC, Kuo WL et al. (2006). Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel. Mol Cancer Ther 5: 853–867.

    Article  CAS  Google Scholar 

  • Caron H, Sluis P, Kraker J, Bokkerink J, Egeler M, Laureys G et al. (1996a). Allelic loss of chromosome 1p as predictor of unfavourable outcome in patients with neuroblastoma. New Engl J Med 334: 225–230.

    Article  CAS  Google Scholar 

  • Caron H, van Sluis P, Buschman R, Pereira do Tanque R, Beks L, de Kraker J et al. (1996b). Allelic loss of the short arm of chromosome 4 in neuroblastoma suggests a novel tumour suppressor gene locus. Hum Genet 97: 834–837.

    Article  CAS  Google Scholar 

  • Chen QR, Bilke S, Wei JS, Greer BT, Steinberg SM, Westermann F et al. (2006). Increased WSB1 copy number correlates with its over-expression which associates with increased survival in neuroblastoma. Genes Chromosomes Cancer 45: 856–862.

    Article  CAS  Google Scholar 

  • Chen QR, Bilke S, Wei JS, Whiteford CC, Cenacchi N, Krasnoselsky AL et al. (2004). cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma. BMC Genomics 5: 70.

    Article  Google Scholar 

  • De Preter K, Speleman F, Combaret V, Lunec J, Board J, Pearson A et al. (2005). No evidence for correlation of DDX1 gene amplification with improved survival probability in patients with MYCN-amplified neuroblastomas. J Clin Oncol 23: 3167–3168.

    Article  Google Scholar 

  • Deng CX . (2006). BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 6: 1416–1426.

    Article  Google Scholar 

  • Fischer M, Skowron M, Berthold F . (2005). Reliable transcript quantification by real-time reverse transcriptase–polymerase chain reaction in primary neuroblastoma using normalization averaged expression levels of the control genes HPRT1 and SDHA. J Mol Diagn 7: 89–96.

    Article  CAS  Google Scholar 

  • Hackett CS, Hodgson JG, Law ME, Fridlyand J, Osoegawa K, de Jong PJ et al. (2003). Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in human tumors. Cancer Res 63: 5266–5273.

    CAS  PubMed  Google Scholar 

  • Henrich KO, Fisher M, Mertens D, Benner A, Wiedemeyer R, Brors B et al. (2006). Reduced expression of CAMTA1 correlates with adverse outcome in neuroblastoma patients. Clin Cancer Res 12: 131–138.

    Article  CAS  Google Scholar 

  • Huang J, Wei W, Zhang J, Liu G, Bignell GR, Stratton MR et al. (2004). Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum Genomics 1: 287–299.

    Article  CAS  Google Scholar 

  • Janoueix-Lerosey I, Novikov E, Monteiro M, Gruel N, Schleiermacher G, Loriod B et al. (2004). Gene expression profiling of 1p35–36 genes in neuroblastoma. Oncogene 23: 5912–5922.

    Article  CAS  Google Scholar 

  • Lastowska M, Cotterill S, Bown N, Cullinane C, Variend S, Lunec J et al. (2002). Breakpoint position on 17q identifies the most aggressive neuroblastoma tumours. Genes Chromosomes Cancer 34: 428–436.

    Article  CAS  Google Scholar 

  • Lastowska M, Cullinane C, Variend S, Cotterill S, Bown N, O'Neill S et al. (2001). Comprehensive genetic and histopathologic study reveals three types of neuroblastoma tumours. J Clin Oncol 12: 3080–3090.

    Article  Google Scholar 

  • Lastowska M, Chung Y-J, Cheng Ching N, Haber M, Norrin MD, Kees UR et al. (2004). Regions syntenic to human 17q are gained in mouse and rat neuroblastoma. Genes Chromosomes Cancer 40: 158–163.

    Article  CAS  Google Scholar 

  • Lastowska M, Nacheva E, McGuckin A, Curtis A, Grace C, Pearson A et al. (1997). Comparative genomic hybridization study of primary neuroblastoma tumors. Genes Chromosomes Cancer 18: 162–169.

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 4: 402–408.

    Article  Google Scholar 

  • Miller MA, Ohashi K, Zhu X, McGrady P, London W, Hogarty M et al. (2006). Survivin mRNA levels are associated with biology of disease and patient survival in neuroblastoma: a report from the Children's Oncology Group. J Pediatr Hematol Oncol 28: 412–417.

    Article  CAS  Google Scholar 

  • Nannya Y, Sanada M, Nakazaki K, Hosoya N, Wang L, Hangaishi A et al. (2005). A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Res 65: 6071–6079.

    Article  CAS  Google Scholar 

  • Nigro JM, Misra A, Zhang L, Smornov I, Colman H, Griffin C et al. (2005). Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res 65: 1678–1686.

    Article  CAS  Google Scholar 

  • Nisen PD, Waber PG, Rich MA, Pierce S, Garvin Jr JR, Gilbert F et al. (1988). N-myc oncogene RNA expression in neuroblastoma. J Natl Cancer Inst 80: 1633–1637.

    Article  CAS  Google Scholar 

  • Perri P, Longo L, Cusano R, McConville CM, Rees SA, Devoto M et al. (2002). Weak linkage at 4p16 to predisposition for human neuroblastoma. Oncogene 28: 8356–8360.

    Article  Google Scholar 

  • Popescu NC, Zimonjic DB . (1997). Molecular cytogenetic characterization of cancer cell alterations. Cancer Genet Cytogenet 93: 10–21.

    Article  CAS  Google Scholar 

  • Rao CR (ed). (1973). Linear Statistical Interference and its Applications (Wiley Series in Probability & Mathematical Statistics) 1st edn. John Wiley & Sons Inc: New York.

    Book  Google Scholar 

  • Schleiermacher G, Bourdeaut F, Combaret V, Pierron G, Raynal V, Aurias A et al. (2005). Stepwise occurrence of a complex unbalanced translocation in neuroblastoma leading to insertion of a telomere sequence and late chromosome 17q gain. Oncogene 24: 3377–3384.

    Article  CAS  Google Scholar 

  • Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, Wong KY et al. (1985). Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastoma. New Engl J Med 313: 1111–1116.

    Article  CAS  Google Scholar 

  • Seltzer R, Richmond TA, Pofahl NJ, Green RD, Eis PS, Nair P et al. (2005). Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tilling oligonucleotide array CGH. Genes Chromosomes Cancer 44: 305–319.

    Article  Google Scholar 

  • Slavc I, Ellenbogen R, Jung WH, Vawter GF, Kretschmar C, Grier H et al. (1990). MYC gene amplification and expression in primary human neuroblastoma. Cancer Res 50: 1459–1463.

    CAS  PubMed  Google Scholar 

  • Stallings RL, Nair P, Maris JM, Catchpoole D, McDermott M, O'Meara A et al. (2006). High-Resolution analysis of chromosomal breakpoints and genomic instability identifies PTPRD as a candidate tumor suppressor gene in neuroblastoma. Cancer Res 66: 3673–3680.

    Article  CAS  Google Scholar 

  • Vandesompele J, Baudis M, De Preter K, Van Roy N, Ambros P, Bown N et al. (2005). Unequivocal delineation of clinicogenetic subgroups and development of a new model for improved outcome prediction in neuroblastoma. J Clin Oncol 10: 22280–22299.

    Google Scholar 

  • Tsafrir D, Bacolod M, Selvanayagam Z, Tsafrir I, Shia J, Zeng Z et al. (2006). Relationship of gene expression and chromosomal abnormalities in colon cancer. Cancer Res 66: 2129–2137.

    Article  CAS  Google Scholar 

  • Walker BA, Leone PE, Jenner MW, Li C, Gonzalez D, Johnson DC et al. (2006). Integration of global SNP-based mapping and expression arrays reveals key regions, mechanisms and genes important in the pathogenesis of multiple myeloma. Blood 108: 1733–1743.

    Article  CAS  Google Scholar 

  • Wang Q, Diskin S, Rappaport E, Attiyeh E, Mosse Y, Shue D et al. (2006). Integrative genomics identifies distinct molecular classes of neuroblastoma and shows that multiple genes are targeted by regional alterations in DNA copy number. Cancer Res 66: 6050–6062.

    Article  CAS  Google Scholar 

  • Weber A, Imisch P, Bergmann E, Christiansen H . (2004). Co-amplification of DDX1 correlates with an improved survival probability in children with MYCN-amplified human neuroblastoma. J Clin Oncol 22: 2681–2690.

    Article  CAS  Google Scholar 

  • Wolf M, Mousses S, Hautanieni S, Karhu R, Huusko P, Allinen M et al. (2004). High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression. Neoplasia 6: 240–246.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Neuroblastoma Society UK, Newcastle Healthcare Charity, the Candlelighters Trust Leeds and Cancer Research UK is gratefully acknowledged. The authors also thank the CCLG for access to constitutional DNA samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Jackson.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łastowska, M., Viprey, V., Santibanez-Koref, M. et al. Identification of candidate genes involved in neuroblastoma progression by combining genomic and expression microarrays with survival data. Oncogene 26, 7432–7444 (2007). https://doi.org/10.1038/sj.onc.1210552

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210552

Keywords

This article is cited by

Search

Quick links