Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ras isoform abundance and signalling in human cancer cell lines

Abstract

The ubiquitously expressed major Ras isoforms: H-, K- and N-Ras, are highly conserved, yet exhibit different biological outputs. We have compared the relative efficiencies with which epidermal or hepatocyte growth factor activates Ras isoforms and the requirement for specific isoforms in the activation of downstream pathways. We find that the relative coupling efficiencies to each Ras isoform are conserved between stimuli. Furthermore, in both cases, inhibition of receptor endocytosis led to reduced N- and H-Ras activation, but K-Ras was unaffected. Acute knockdown of each isoform with siRNA allows endogenous Ras isoform function and abundance to be probed. This revealed that there is significant variation in the contribution of individual isoforms to total Ras across a panel of cancer cell lines although typically KNH. Intriguingly, cancer cell lines where a significant fraction of endogenous Ras is oncogenically mutated showed attenuated activation of canonical Ras effector pathways. We profiled the contribution of each Ras isoform to the total Ras pool allowing interpretation of the effect of isoform-specific knockdown on signalling outcomes. In contrast to previous studies indicating preferential coupling of isoforms to Raf and PtdIns-3-kinase pathways, we find that endogenous Ras isoforms show no specific coupling to these major Ras pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . (2003). Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4: 915–925.

    Article  CAS  Google Scholar 

  • Bos JL . (1989). Ras oncogenes in human cancer: a review. Cancer Res 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  • Chen G, Oh S, Monia BP, Stacey DW . (1996). Antisense oligonucleotides demonstrate a dominant role of c-Ki-RAS proteins in regulating the proliferation of diploid human fibroblasts. J Biol Chem 271: 28259–28265.

    Article  CAS  Google Scholar 

  • Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H et al. (2002). Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4: 343–350.

    Article  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411: 494–498.

    Article  CAS  Google Scholar 

  • Fridman M, Muruta H, Gonez J, Walker F, Treutlein H, Zeng J et al. (2000). Point mutations of c-Raf-1 RBD with elevated binding to v-Ha-Ras. J Biol Chem 275: 30363–30371.

    Article  CAS  Google Scholar 

  • Giehl K, Skripczynski B, Mansard A, Menke A, Gierschik P . (2000). Growth factor-dependent activation of the Ras-Raf-MEK–MAPK pathway in the human pancreatic carcinoma cell line PANC-1 carrying activated K-ras: implications for cell proliferation and cell migration. Oncogene 19: 2930–2942.

    Article  CAS  Google Scholar 

  • Haigler H, Ash JF, Singer SJ, Cohen S . (1978). Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci USA 75: 3317–3321.

    Article  CAS  Google Scholar 

  • Hammond DE, Carter S, McCullough J, Urbe S, Vande Woude G, Clague MJ . (2003). Endosomal dynamics of met determine signaling output. Mol Biol Cell 14: 1346–1354.

    Article  CAS  Google Scholar 

  • Hammond DE, Urbe S, Vande Woude GF, Clague MJ . (2001). Down-regulation of MET, the receptor for hepatocyte growth factor. Oncogene 20: 2761–2770.

    Article  CAS  Google Scholar 

  • Hancock JF . (2003). Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4: 373–384.

    Article  CAS  Google Scholar 

  • Iida M, Towatari M, Nakao A, Iida H, Kiyoi H, Nakano Y et al. (1999). Lack of constitutive activation of MAP kinase pathway in human acute myeloid leukemia cells with N-Ras mutation. Leukemia 13: 585–589.

    Article  CAS  Google Scholar 

  • Lim KH, O'Hayer K, Adam SJ, Kendall SD, Campbell PM, Der CJ et al. (2006). Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol 16: 2385–2394.

    Article  CAS  Google Scholar 

  • Mitin NY, Ramocki MB, Zullo AJ, Der CJ, Konleczny SF, Taparowsky EJ . (2004). Identification and characterization of rain, a novel Ras-interacting protein with a unique subcellular localization. J Biol Chem 279: 22353–22361.

    Article  CAS  Google Scholar 

  • Prior IA, Harding A, Yan J, Sluimer J, Parton RG, Hancock JF . (2001). GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3: 368–375.

    Article  CAS  Google Scholar 

  • Prior IA, Muncke C, Parton RG, Hancock JF . (2003). Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160: 165–170.

    Article  CAS  Google Scholar 

  • Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E et al. (1999). Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nat Cell Biol 1: 98–105.

    Article  CAS  Google Scholar 

  • Roy S, Wyse B, Hancock JF . (2002). H-Ras signaling and K-Ras signaling are differentially dependent on endocytosis. Mol Cell Biol 22: 5128–5140.

    Article  CAS  Google Scholar 

  • Sanger. The data was obtained from the Wellcome Trust Sanger Institute Cancer Genome Project web site,http://www.sanger.ac.uk/genetics/CGP.

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  Google Scholar 

  • Seufferlein T, Van Lint J, Liptay S, Adler G, Schmid RM . (1999). Transforming growth factor alpha activates Ha-Ras in human pancreatic cancer cells with Ki-ras mutations. Gastroenterology 116: 1441–1452.

    Article  CAS  Google Scholar 

  • Sharpe CC, Dockrell ME, Noor MI, Monia BP, Hendry BM . (2000). Role of Ras isoforms in the stimulated proliferation of human renal fibroblasts in primary culture. J Am Soc Nephrol 11: 1600–1606.

    CAS  PubMed  Google Scholar 

  • Trusolino L, Bertotti A, Comoglio PM . (2001). A signaling adapter function for a6b4 integrin in the control of HGF-dependent invasive growth. Cell 107: 643–654.

    Article  CAS  Google Scholar 

  • Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S et al. (2004). Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5: 375–387.

    Article  CAS  Google Scholar 

  • van der Bliek A, Redelmeier T, Damke H, Tisdale E, Meyerowitz E, Schmid S . (1993). Mutations in human dynamin block an intermediate in clathrin coated vesicle formation. J Cell Biol 122: 553–563.

    Article  CAS  Google Scholar 

  • Vieria AV, Lamaze C, Schmid SL . (1996). Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274: 2086–2089.

    Article  Google Scholar 

  • Villalonga P, Lopez-Alcala C, Bosch M, Chiloeches A, Rocamora N, Gil J et al. (2001). Calmodulin binds to K-Ras, but not to H- or N-Ras, and modulates its downstream signaling. Mol Cell Biol 21: 7345–7354.

    Article  CAS  Google Scholar 

  • Vos MD, Ellis CA, Elam C, Ülku AS, Taylor BJ, Clark GJ . (2003). RASSF2 is a novel K-Ras-specific effector and potential tumour suppressor. J Biol Chem 278: 28045–28051.

    Article  CAS  Google Scholar 

  • Walsh AB, Bar-Sagi D . (2001). Differential activation of the Rac pathway by Ha-Ras and K-Ras. J Biol Chem 276: 15609–15615.

    Article  CAS  Google Scholar 

  • Wittinghofer A, Herrmann C . (1995). Ras-effector interactions, the problem of specificity. FEBS Lett 369: 52–56.

    Article  CAS  Google Scholar 

  • Wolfman JC, Wolfman A . (2000). Endogenous c-N-Ras provides a steady-state anti-apoptotic signal. J Biol Chem 275: 19315–19323.

    Article  CAS  Google Scholar 

  • Yan J, Roy S, Apolloni A, Lane A, Hancock JF . (1998). Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J Biol Chem 273: 24052–24056.

    Article  CAS  Google Scholar 

  • Yip-Schneider MT, Lin A, Barnard D, Sweeney CJ, Marshall MS . (1999). Lack of elevated MAP kinase (Erk) activity in pancreatic carcinomas despite oncogenic K-ras expression. Int J Oncol 15: 271–279.

    CAS  PubMed  Google Scholar 

  • Yip-Schneider MT, Lin A, Marshall MS . (2001). Pancreatic tumor cells with mutant K-ras suppress ERK activity by MEK-dependent induction of MAP kinase phosphatase-2. Biochem Biophys Res Commun 280: 992–997.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cancer Research UK, the North West Cancer Research Fund and the Royal Society for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I A Prior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omerovic, J., Hammond, D., Clague, M. et al. Ras isoform abundance and signalling in human cancer cell lines. Oncogene 27, 2754–2762 (2008). https://doi.org/10.1038/sj.onc.1210925

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210925

Keywords

This article is cited by

Search

Quick links