Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human sulfotransferase SULT2A1 pharmacogenetics: genotype-to-phenotype studies

Abstract

SULT2A1 catalyzes the sulfate conjugation of dehydroepiandrosterone (DHEA) as well as other steroids. As a step toward pharmacogenetic studies, we have ‘resequenced’ SULT2A1 using 60 DNA samples from African-American and 60 samples from Caucasian-American subjects. All exons, splice junctions and approximately 370 bp located 5′ of the site of transcription initiation were sequenced. We observed 15 single nucleotide polymorphisms (SNPs), including three non-synonymous coding SNPs (cSNPs) that were present only in DNA from African-American subjects. Linkage analysis revealed that two of the nonsynonymous cSNPs were tightly linked. Expression constructs were created for all nonsynonymous cSNPs observed, including a ‘double variant’ construct that included the two linked cSNPs, and those constructs were expressed in COS-1 cells. SULT2A1 activity was significantly decreased for three of the four variant allozymes. Western blot analysis demonstrated that decreased levels of immunoreactive protein appeared to be the major mechanism responsible for decreases in activity, although apparent Km values also varied among the recombinant allozymes. In addition, the most common of the nonsynonymous cSNPs disrupted the portion of SULT2A1 involved with dimerization, and this variant allozyme behaved as a monomer rather than a dimer during gel filtration chromatography. These observations indicate that common genetic polymorphisms for SULT2A1 can result in reductions in levels of both activity and enzyme protein. They also raise the possibility of ethnic-specific pharmacogenetic variation in SULT2A1-catalyzed sulfation of both endogenous and exogenous substrates for this phase II drug-metabolizing enzyme.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Weinshilboum R, Otterness D . Sulfotransferase enzymes. In: Kauffman FC (ed) Conjugation-Deconjugation Reactions in Drug Metabolism and Toxicity, ch 2, ‘Handbook of Experimental Pharmacology’ series, vol 112 Springer-Verlag: Berlin Heidelberg 1994 45–78

    Chapter  Google Scholar 

  2. Falany CN . Enzymology of human cytosolic sulfotransferases FASEB J 1997 11: 206–216

    Article  CAS  Google Scholar 

  3. Falany CN, Vazquez ME, Kalb JM . Purification and characterization of human liver dehydroepiandrosterone sulphotransferase Biochem J 1989 260: 641–646

    Article  CAS  Google Scholar 

  4. Hernández JS, Watson RWG, Wood TC, Weinshilboum RM . Sulfation of estrone and 17β-estradiol in human liver: catalysis by thermostable phenol sulfotransferase and by dehydroepiandrosterone sulfotransferase Drug Met Dispos 1992 20: 413–422

    Google Scholar 

  5. Glatt H, Pauly K, Czich A, Falany JL, Falany CN . Activation of benzylic alcohols to mutagens by rat and human sulfotransferases expressed in Escherichia coli Eur J Pharmacol 1995 293: 173–181

    Article  CAS  Google Scholar 

  6. Glatt H . Sulfation and sulfotransferases 4: bioactivation of mutagents via sulfation FASEB J 1997 11: 314–321

    Article  CAS  Google Scholar 

  7. Otterness DM, Wieben ED, Wood TC, Watson RWG, Madden BJ, McCormick DJ et al . Human liver dehydroepiandrosterone sulfotransferase: molecular cloning and expression of cDNA Mol Pharmacol 1992 41: 865–872

    CAS  Google Scholar 

  8. Otterness DM, Weinshilboum R . Human dehydroepiandrosterone sulfotransferase: molecular cloning of cDNA and genomic DNA Chem-Biol Interact 1994 92: 145–159

    Article  CAS  Google Scholar 

  9. Orentreich N, Brind JL, Vogelman JH, Andres R, Baldwin H . Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in man J Clin Endocrinol Met 1992 75: 1002–1004

    CAS  Google Scholar 

  10. Rotter JI, Wong FL, Lifrak ET, Parker LN . A genetic component to the variation of dehydroepiandrosterone sulfate Metabolism 1985 34: 731–736

    Article  CAS  Google Scholar 

  11. Lane MA, Ingram DK, Ball SS, Roth GS . Dehydroepiandrosterone sulfate: a biomarker of primate aging slowed by calorie restriction J Clin Endocrinol Met 1997 82: 2093–2096

    Article  CAS  Google Scholar 

  12. Villareal DT, Holloszy JO, Kohrt WM . Effects of DHEA replacement on bone mineral density and body composition in elderly women and men Clin Endocrinol 2000 53: 561–568

    Article  CAS  Google Scholar 

  13. Aksoy IA, Sochorová V, Weinshilboum R . Human liver dehydroepiandrosterone sulfotransferase: nature and extent of individual variation Clin Pharmacol Ther 1993 54: 498–506

    Article  CAS  Google Scholar 

  14. Otterness DM, Her C, Aksoy S, Kimura S, Wieben ED, Weinshilboum RM . Human dehydroepiandrosterone sulfotransferase gene: molecular cloning and structural characterization DNA Cell Biol 1995 14: 331–341

    Article  CAS  Google Scholar 

  15. Otterness DM, Mohrenweiser HW, Brandriff BF, Weinshilboum RM . Dehydroepiandrosterone sulfotransferase gene (STD): localization to human chromosome 19q13.3 Cytogenet Cell Genet 1995 70: 45–47

    Article  CAS  Google Scholar 

  16. Luu-The V, Dufort I, Paquet N, Reimnitz G, Labrie F . Structural characterization and expression of the human dehydroepiandrosterone sulfotransferase gene DNA Cell Biol 1995 14: 511–518

    Article  CAS  Google Scholar 

  17. Durocher F, Morissette J, Dufort I, Simard J, Luu-The V . Genetic linkage mapping of the dehydroepiandrosterone sulfotransferase (STD) gene on the chromosome 19q13.3 region Genomics 1995 29: 781–783

    Article  CAS  Google Scholar 

  18. Raftogianis RB, Wood TC, Otterness DM, Van Loon JA, Weinshilboum RM . Phenol sulfotransferase pharmacogenetics in humans: association of common SULT1A1 alleles with TS PST phenotype Biochem Biophys Res Commun 1997 239: 298–304

    Article  CAS  Google Scholar 

  19. Raftogianis RB, Wood TC, Weinshilboum RM . Human phenol sulfotransferases SULT1A2 and SULT1A1: genetic polymorphisms, allozyme properties and human liver genotype-phenotype correlations Biochem Pharmacol 1999 58: 605–610

    Article  CAS  Google Scholar 

  20. Freimuth RR, Eckloff B, Wieben ED, Weinshilboum RM . Human sulfotransferase SULT1C1 pharmacogenetics: gene resequencing and functional genomic studies Pharmacogenetics 2001 (in press)

  21. Chadwick RB, Conrad MP, McGinnis MD, Johnston-Dow L, Spurgeon SL, Kronick MN . Heterozygote and mutation detection by direct automated fluorescent DNA sequencing using a mutant Taq DNA polymerase Bio Techniques 1996 20: 676–683

    CAS  Google Scholar 

  22. Boguslavsky J . Find SNPs online Drug Discovery Develop 2001 June: 67–68

    Google Scholar 

  23. Iida A, Sekine A, Saito S, Kitamura Y, Kitamoto T, Osawa S et al . Catalog of 320 single nucleotide polymorphisms (SNPs) in 20 quinone oxidoreductase and sulfotransferase genes J Hum Genet 2001 46: 225–240

    Article  CAS  Google Scholar 

  24. Drysdale CM, McGraw DW, Stack CB, Stephens JC, Judson RS, Nandabalan K et al . Complex promoter and coding region β2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness Proc Natl Acad Sci USA 2000 97: 10483–10488

    Article  CAS  Google Scholar 

  25. Hartl DL, Clark AG . Principles of Population Genetics, 3rd edn Sinauer Associates: Sunderland, MA 1997 pp 95–107

    Google Scholar 

  26. Hedrick PW . Genetics of Populations, 3rd edn Jones and Bartlett Publ: Sudbury, MA 2000 pp 396–405

    Google Scholar 

  27. Szumlanski C, Otterness D, Her C, Lee D, Brandriff B, Kelsell D et al . Thiopurine methyltransferase pharmacogenetics: human gene cloning and characterization of a common polymorphism DNA Cell Biol 1996 15: 17–30

    Article  CAS  Google Scholar 

  28. Preuss CV, Wood TC, Szumlanski CL, Raftogianis RB, Otterness DM, Girard B . Human histamine N-methyltransferase pharmacogenetics: common genetic polymorphisms that alter activity Mol Pharmacol 1998 53: 708–717

    Article  CAS  Google Scholar 

  29. Tai H-L, Fessing MY, Bonten EJ, Yanishevsky Y, d'Azzo A, Krynetski EY et al . Enhanced proteasomal degradation of mutant human thiopurine S-methyltransferase (TPMT) in mammalian cells: mechanism for TPMT protein deficiency inherited by TPMT*2, TPMT*3A, TPMT*3B or TPMT*3C Pharmacogenetics 1999 9: 641–650

    Article  CAS  Google Scholar 

  30. Wood TC, Her C, Aksoy IA, Otterness DM, Weinshilboum RM . Human dehydroepiandrosterone sulfotransferase pharmacogenetics: quantitative western analysis and gene sequence polymorphisms J Steroid Biochem Mol Biol 1996 59: 467–478

    Article  CAS  Google Scholar 

  31. Pedersen LC, Petrotchenko EV, Negishi M . Crystal structure of SULT2A3, human hydroxysteroid sulfotransferase FEBS Lett 2000 475: 61–64

    Article  CAS  Google Scholar 

  32. Varin L, Marsolais F, Brisson N . Chimeric flavonol sulfotransferase define a domain responsible for substrate and position specificities J Biol Chem 1995 270: 12498–12502

    Article  CAS  Google Scholar 

  33. Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB . Sulfotransferase molecular biology: cDNAs and genes FASEB J 1997 11: 3–14

    Article  CAS  Google Scholar 

  34. Petrotchenko EV, Pedersen LC, Borchers CH, Tomer KB, Negishi M . The dimerization motif of cytosolic sulfotransferases FEBS Lett 2001 290: 39–43

    Article  Google Scholar 

  35. Hobkirk R . Steroid sulfotransferases and steroid sulfatases: characterization and biological roles Can J Biochem Cell Biol 1985 63: 1127–1144

    Article  CAS  Google Scholar 

  36. Kasessman H, Heissig F, von Haeseler A, Pääbo S . DNA sequence variation in non-coding region of low recombination on the human X chromosome Nature Genet 1999 22: 78–81

    Article  Google Scholar 

  37. Meacham G, Patterson C, Zhang W, Younger JM, Cyr DM . The Hsc 70 co-chaperone CHIP targets immature CFTR for proteasomal degradation Nature Cell Biol 2001 3: 100–105

    Article  CAS  Google Scholar 

  38. Nickerson DA, Tobe VO, Taylor SL . PolyPhred: automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing Nucl Acids Res 1997 25: 2745–2751

    Article  CAS  Google Scholar 

  39. Gordon D, Abajian C, Green P . Consed: a graphical tool for sequence finishing Genome Res 1998 8: 195–202

    Article  CAS  Google Scholar 

  40. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR . Site-directed mutagenesis by overlap extension using the polymerase chain reaction Gene 1989 77: 51–59

    Article  CAS  Google Scholar 

  41. Foldes A, Meek JL . Rat brain phenolsulfotransferase—partial purification and some properties Biochim Biophys Acta 1973 327: 365–374

    Article  CAS  Google Scholar 

  42. Aksoy S, Klener J, Weinshilboum RM . Catechol O-methyltransferase pharmacogenetics: photoaffinity labeling and western blot analysis of human liver samples Pharmacogenetics 1993 3: 116–122

    Article  CAS  Google Scholar 

  43. Wilkinson GN . Statistical estimations in enzyme kinetics Biochem J 1961 80: 324–332

    Article  CAS  Google Scholar 

  44. Cleland WW . Computer programmes for processing enzyme kinetic data Nature Lond 1963 198: 463–465

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Edward Carlini for assistance with the preparation of the expression constructs, Dr Araba Adjei and Mr Thomas Wood for their advice and Ms Luanne Wussow for her assistance with the preparation of this manuscript.

Supported in part by NIH grants RO1 GM28157 (RMW), RO1 GM35720 (RMW) and UO1 GM61388 (RMW and EDW).

The DNA resequencing data described in this manuscript have been deposited in the NIH-sponsored Pharmacogenetics Research Network database PharmGKB with accession number PKB_K00000190.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R M Weinshilboum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomae, B., Eckloff, B., Freimuth, R. et al. Human sulfotransferase SULT2A1 pharmacogenetics: genotype-to-phenotype studies. Pharmacogenomics J 2, 48–56 (2002). https://doi.org/10.1038/sj.tpj.6500089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500089

Keywords

This article is cited by

Search

Quick links