Skip to main content
Log in

Inner retinal photoreceptors (IRPs) in mammals and teleost fish

  • PPS
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Research over the past decade has provided overwhelming evidence that photoreception in the vertebrate eye is not confined to the rods and cones. The discovery of non-rod, non-cone ocular photoreceptors in mammals and fish arose from quite different lines of investigation. In transgenic mice entirely lacking functional rod and cone photoreceptors a range of responses to light, including the regulation of the circadian system and a pupillary light reflex, are preserved. Electrophysiological and imaging approaches were then able to characterise a coupled plexus of directly light sensitive ganglion cells. Most recently action spectroscopy has shown that a novel ‘blue-light’ sensitive photopigment based upon opsin/vitamin A (OP480) mediates these responses to light. Several candidate genes have emerged for OP480, with melanopsin being by far the strongest. A definitive link, however, between this gene and OP480 has still to be established. In contrast to the mammals, the discovery of inner retinal photoreceptors (IRPs) in fish started with the discovery of a new gene family (VA opsin). The teleost VA opsins form functional photopigments and are expressed in several different types of inner retinal neuron, including retinal horizontal cells. Recent studies have investigated the electrical properties of these photosensitive neurones, but their light-sensing role remains a matter of speculation. Thus the study of IRP is developing along quite separate lines. In the mammals the research is directed towards a molecular identification of the photopigment (OP480) and its cascade, whilst in fish the major effort is directed towards identifying a role for these novel photoreceptors using physiological approaches. The discovery of IRPs in the vertebrates tells us that despite 150 years of research, we still have much to learn about how the eye processes light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Roenneberg, R. G. Foster, Twilight times: Light and the circadian system, Photochem. Photobiol., 1997, 66, 549–561.

    Article  CAS  PubMed  Google Scholar 

  2. D. Nelson, J. Takahashi, Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus), J. Physiol., 1991, 439, 115–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. R. G. Foster, M. W. Hankins, Non-rod, non-cone photoreception in the vertebrates, Prog.. Retin. Eye Res., 2002, 21, 507–527.

    Article  PubMed  Google Scholar 

  4. M. R. Ralph, R. G. Foster, F. C. Davis, M. Menaker, Transplanted suprachiasmatic nucleus determines circadian period, Science, 1990, 247, 975–978.

    Article  CAS  PubMed  Google Scholar 

  5. I. Provencio, H. M. Cooper, R. G. Foster, Retinal projections in mice with inherited retinal degeneration: Implications for circadian photoentrainment., J. Comp. Neurol., 1998, 395, 417–439.

    Article  CAS  PubMed  Google Scholar 

  6. S. S. Campbell, P. J. Murphy, Extraocular circadian phototransduction in humans, Science, 1998, 279, 396–399.

    Article  CAS  PubMed  Google Scholar 

  7. K. P. Wright, Jr., C. A. Czeisler, Absence of circadian phase resetting in response to bright light behind the knees, Science, 2002, 297, 571.

    Article  CAS  PubMed  Google Scholar 

  8. R. G. Foster, Shedding light on the biological clock, Neuron, 1998, 20, 829–832.

    Article  CAS  PubMed  Google Scholar 

  9. R. G. Foster, I. Provencio, D. Hudson, S. Fiske, W. DeGrip, M. Menaker, Circadian photoreception in the retinally degenerate mouse (rd/ rd), J. Comp. Physiol. A, 1991, 169, 39–50.

    Article  CAS  PubMed  Google Scholar 

  10. M. S. Freedman, R. J. Lucas, B. Soni, M. von Schantz, M. Munoz, Z. K. David-Gray, R. G. Foster, Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors, Science, 1999, 284, 502–504.

    Article  CAS  PubMed  Google Scholar 

  11. R. J. Lucas, M. S. Freedman, M. Muñoz, J. M. García-Fernández, R. G. Foster, Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors, Science, 1999, 284, 505–507.

    Article  CAS  PubMed  Google Scholar 

  12. R. J. Lucas, R. H. Douglas, R. G. Foster, Characterization of an ocular photopigment capable of driving pupillary constriction in mice, Nat. Neurosci., 2001, 4, 621–626.

    Article  CAS  PubMed  Google Scholar 

  13. S. Hattar, R. J. Lucas, N. Mrosovsky, S. Thompson, R. H. Douglas, M. W. Hankins, J. Lem, M. Biel, F. Hofmann, R. G. Foster, K. W. Yau, Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice, Nature, 2003, 424, 75–81.

    Article  CAS  Google Scholar 

  14. G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, M. D. Rollag, Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor, J. Neurosci., 2001, 21, 6405–6412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. Thapan, J. Arendt, D. J. Skene, An action spectrum for melatonin suppression: Evidence for a novel non-rod, non-cone photoreceptor system in humans, J. Physiol., 2001, 535, 261–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. W. Lockley, G. C. Brainard, C. A. Czeisler, High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light, J. Clin. Endocrinol. Metab., 2003, 88, 4502–4505.

    Article  CAS  PubMed  Google Scholar 

  17. A. Sancar, Cryptochrome: The second photoactive pigment in the eye and its role in circadian photoreception, Annu. Rev. Biochem., 2000, 69, 31–67.

    Article  CAS  PubMed  Google Scholar 

  18. R. N. Van Gelder, R. Wee, J. A. Lee, D. C. Tu, Reduced pupillary light responses in mice lacking cryptochromes, Science, 2003, 299, 222.

    Article  PubMed  Google Scholar 

  19. R. J. Lucas, R. G. Foster, Mammalian photoentrainment: A role for cryptochrome?, J. Biol. Rhythms, 1999, 14, 4–9.

    Article  PubMed  Google Scholar 

  20. R. J. Lucas, R. G. Foster, Circadian rhythms: Something to cry about?, Curr. Biol., 1999, 9, 214–217.

    Article  Google Scholar 

  21. D. M. Berson, F. A. Dunn, M. Takao, Phototransduction by retinal ganglion cells that set the circadian clock, Science, 2002, 295, 1070–1073.

    Article  CAS  PubMed  Google Scholar 

  22. S. Sekaran, R. G. Foster, R. J. Lucas, M. W. Hankins, Calcium imaging reveals a network of intrinsically light-sensitive inner-retinal neurons, Curr. Biol., 2003, 13, 1290–1298.

    Article  CAS  PubMed  Google Scholar 

  23. B. G. Soni, A. R. Philp, B. E. Knox, R. G. Foster, Novel retinal photoreceptors, Nature, 1998, 394, 27–28.

    Article  CAS  PubMed  Google Scholar 

  24. A. Jenkins, M. Muñoz, E. E. Tarttelin, J. Bellingham, R. G. Foster, M. W. Hankins, Va opsin, melanopsin, and an inherent light response within retinal interneurons, Curr. Biol., 2003, 13, 1269–1278.

    Article  CAS  PubMed  Google Scholar 

  25. D. Kojima, H. Mano, Y. Fukada, Vertebrate ancient-long opsin: A green-sensitive photoreceptive molecule present in zebrafish deep brain and retinal horizontal cells, J. Neurosci., 2000, 20, 2845–2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R. G. Foster, J. Bellingham, Opsins and melanopsins, Curr. Biol., 2002, 12, 543–544.

    Article  Google Scholar 

  27. M. Yang, H. K. W. Fong, Synthesis of the all- trans-retinal chromophore of retinal G protein-coupled receptor opsin in cultured pigment epithelial cells, J. Biol. Chem., 2002, 277, 3318–3324.

    Article  CAS  PubMed  Google Scholar 

  28. P. A. Hargrave, J. H. McDowell, D. R. Curtis, J. K. Wang, E. Juszczak, S. L. Fong, J. K. Rao, P. Argos, The structure of bovine rhodopsin, Biophys. Struct. Mech., 1983, 9, 235–244.

    Article  CAS  PubMed  Google Scholar 

  29. A. Ovchinnikov Iu, N. G. Abdulaev, M. Feigina, I. D. Artamonov, A. S. Bogachuk, Visual rhodopsin. Iii. Complete amino acid sequence and topography in a membrane, Bioorg. Khim., 1983, 9, 1331–1340.

    Google Scholar 

  30. J. Nathans, D. S. Hogness, Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin, Cell, 1983, 34, 807–814.

    Article  CAS  PubMed  Google Scholar 

  31. H. Zhang, S. Yokoyama, Molecular evolution of the rhodopsin gene of marine lamprey petromyzon marinus, Gene, 1997, 191, 1–6.

    Article  CAS  PubMed  Google Scholar 

  32. J. Fitzgibbon, A. Hope, S. Slobodyanyuk, J. Bellingham, J. K. Bowmaker, D. M. Hunt, The rhodopsin-encoding gene of bony fish lacks introns, Gene, 1995, 164, 273–277.

    Article  CAS  PubMed  Google Scholar 

  33. J. Bowmaker and D. M. Hunt, in Adaptive mechanisms in the ecology of vision, ed. S. N. Archer, M. B. A. Djamgoz, E. R. Loew, J. C. Partridge and S. Vallerga, Kluwer Academic Publishers, Dordrecht, Netherlands, 1999, pp. 439–462.

  34. T. Ebrey, Y. Koutalos, Vertebrate photoreceptors, Prog. Retin. Eye Res., 2001, 20, 49–94.

    Article  CAS  PubMed  Google Scholar 

  35. D. M. Hunt, S. E. Wilkie, J. K. Bowmaker, S. Poopalasundaram, Vision in the ultraviolet, Cell. Mol. Life Sci., 2001, 58, 1583–1598.

    Article  CAS  PubMed  Google Scholar 

  36. J. Nathans, T. Darcy, D. S. Hogness, Molecular genetics of human color vision: The genes encoding blue, green, and red pigments, Science, 1986, 232, 193–202.

    Article  CAS  PubMed  Google Scholar 

  37. P. Moutsaki, J. Bellingham, B. G. Soni, Z. K. David-Gray, R. G. Foster, Sequence, genomic structure, and tissue expression of carp (cyprinus carpio l.) vertebrate ancient (va) opsin, FEBS Lett., 2000, 473, 316–322.

    Article  CAS  PubMed  Google Scholar 

  38. S. Yokoyama, R. Yokoyama, Adaptive evolution of photoreceptors and visual pigments in vertebrates, Annu. Rev. Ecol. Syst., 1996, 27, 543–567.

    Article  Google Scholar 

  39. C. A. Arrese, N. S. Hart, N. Thomas, L. D. Beazley, J. Shand, Trichromacy in australian marsupials, Curr. Biol., 2002, 12, 657–660.

    Article  CAS  PubMed  Google Scholar 

  40. J. Z. Young, The life of the vertebrates, The Clarendon Press, Oxford, 1962.

    Book  Google Scholar 

  41. P. A. Hargrave, J. H. McDowell, Rhodopsin and phototransduction, Int. Rev. Cytol., 1992, 137B, 49–97.

    CAS  PubMed  Google Scholar 

  42. P. A. Hargrave, Rhodopsin structure, function, and topography the friedenwald lecture, Invest. Ophthalmol. Vis. Sci., 2001, 42, 3–9.

    CAS  PubMed  Google Scholar 

  43. I. M. Pepe, Rhodopsin and phototransduction, J Photochem. Photobiol. B, 1999, 48, 1–10.

    Article  CAS  PubMed  Google Scholar 

  44. J. Bockaert, J. P. Pin, Molecular tinkering of g protein-coupled receptors: An evolutionary success, Embo J., 1999, 18, 1723–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S. S. Karnik, T. P. Sakmar, H. B. Chen, H. G. Khorana, Cysteine residues 110 and 187 are essential for the formation of correct structure in bovine rhodopsin, Proc. Natl. Acad. Sci. USA, 1988, 85, 8459–8463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. R. R. Franke, B. Konig, T. P. Sakmar, H. G. Khorana, K. P. Hofmann, Rhodopsin mutants that bind but fail to activate transducin, Science, 1990, 250, 123–125.

    Article  CAS  PubMed  Google Scholar 

  47. R. R. Franke, T. P. Sakmar, R. M. Graham, H. G. Khorana, Structure and function in rhodopsin. Studies of the interaction between the rhodopsin cytoplasmic domain and transducin, J. Biol. Chem., 1992, 267, 14767–14774.

    Article  CAS  PubMed  Google Scholar 

  48. O. Fritze, S. Filipek, V. Kuksa, K. Palczewski, K. P. Hofmann, O. P. Ernst, Role of the conserved npxxy(x)5,6f motif in the rhodopsin ground state and during activation, Proc. Natl. Acad. Sci. USA, 2003, 100, 2290–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. P. A. Hargrave, The amino-terminal tryptic peptide of bovine rhodopsin. A glycopeptide containing two sites of oligosaccharide attachment, Biochim. Biophys. Acta, 1977, 492, 83–94.

    Article  CAS  PubMed  Google Scholar 

  50. Yu. A. Ovchinnikov, N. G. Abdulaev, A. S. Bogachuk, Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated, FEBS Lett., 1988, 230, 1–5.

    Article  CAS  PubMed  Google Scholar 

  51. T. Okano, T. Yoshizawa, Y. Fukada, Pinopsin is a chicken pineal photoreceptive molecule, Nature, 1994, 372, 94–97.

    Article  CAS  PubMed  Google Scholar 

  52. A. Nakamura, D. Kojima, H. Imai, A. Terakita, T. Okano, Y. Shichida, Y. Fukada, Chimeric nature of pinopsin between rod and cone visual pigments, Biochemistry, 1999, 38, 14738–14745.

    Article  CAS  PubMed  Google Scholar 

  53. M. Max, A. Surya, J. S. Takahashi, R. F. Margolskee, B. E. Knox, Light-dependent activation of rod transducin by pineal opsin, J. Biol. Chem., 1998, 273, 26820–26826.

    Article  CAS  PubMed  Google Scholar 

  54. M. Max, P. J. McKinnon, K. J. Seidenman, R. K. Barrett, M. L. Applebury, J. S. Takahashi, R. F. Margolskee, Pineal opsin: A nonvisual opsin expressed in chick pineal, Science, 1995, 267, 1502–1506.

    Article  CAS  PubMed  Google Scholar 

  55. S. Kawamura, S. Yokoyama, Molecular characterization of the pigeon p-opsin gene, Gene, 1996, 182, 213–214.

    Article  CAS  PubMed  Google Scholar 

  56. S. Kawamura, S. Yokoyama, Expression of visual and nonvisual opsins in american chameleon, Vision Res., 1997, 37, 1867–1871.

    Article  CAS  PubMed  Google Scholar 

  57. T. Yoshikawa, T. Okano, T. Oishi, Y. Fukada, A deep brain photoreceptive molecule in the toad hypothalamus, FEBS Lett., 1998, 424, 69–72.

    Article  PubMed  Google Scholar 

  58. T. Okano, K. Yamazaki, T. Kasahara, Y. Fukada, Molecular cloning of heterotrimeric G-protein α-subunits in chicken pineal gland, J. Mol. Evol., 1997, 44 Suppl. 1, S91–S97.

    Article  CAS  PubMed  Google Scholar 

  59. B. G. Soni, R. G. Foster, A novel and ancient vertebrate opsin, FEBS Lett., 1997, 406, 279–283.

    Article  CAS  PubMed  Google Scholar 

  60. A. R. Philp, J.-M. García-Fernández, B. G. Soni, R. J. Lucas, J. Bellingham, R. G. Foster, Vertebrate ancient (va) opsin and extraretinal photoreception in the atlantic salmon (salmo salar), J. Exp. Biol., 2000, 203, 1925–1936.

    Article  CAS  PubMed  Google Scholar 

  61. P. Ekström, R. G. Foster, H.-W. Korf, J. J. Schalken, Antibodies against retinal photoreceptor-specific proteins reveal axonal projections from the photosensory pineal organ of teleosts, J. Comp. Neurol., 1987, 265, 25–33.

    Article  PubMed  Google Scholar 

  62. P. Ekström, H. Meissl, The pineal organ of teleost fishes, Rev. Fish Biol. Fisher., 1997, 7, 199–284.

    Article  Google Scholar 

  63. R. G. Foster, M. S. Grace, I. Provencio, W. J. Degrip, J. M. García-Fernández, Identification of vertebrate deep brain photoreceptors, Neurosci. Biobehav. Rev., 1994, 18, 541–546.

    Article  CAS  PubMed  Google Scholar 

  64. T. Yoshikawa, T. Oishi, Extraretinal photoreception and circadian systems in nonmammalian vertebrates, Comp. Biochem. Physiol., 1998, 119B, 65–72.

    Article  CAS  Google Scholar 

  65. T. Minamoto, I. Shimizu, A novel isoform of vertebrate ancient opsin in a smelt fish plecoglossus altivelis, Biochem. Biophys. Res. Commun., 2002, 290, 280–286.

    Article  CAS  PubMed  Google Scholar 

  66. S. Blackshaw, S. H. Snyder, Parapin opsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family, J. Neurosci., 1997, 17, 8083–8092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. M. Koyanagi, E. Kawano, Y. Kinugawa, T. Oishi, Y. Shichida, S. Tamotsu, A. Terakita, Bistable UV pigment in the lamprey pineal, Proc. Natl. Acad. Sci. USA, 2004, 101, 6687–6691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. S. Blackshaw, S. H. Snyder, Encephalopsin: A novel mammalian extraretinal opsin discretely localized in the brain, J. Neurosci., 1999, 19, 3681–3690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. D. M. Starace, B. E. Knox, Cloning and expression of a xenopus short wavelength cone pigment, Exp. Eye Res., 1998, 67, 209–220.

    Article  CAS  PubMed  Google Scholar 

  70. S. Halford, M. S. Freedman, J. Bellingham, S. L. Inglis, S. Poopalasundaram, B. G. Soni, R. G. Foster, D. M. Hunt, Characterization of a novel human opsin gene with wide tissue expression and identification of embedded and flanking genes on chromosome 1q43, Genomics, 2001, 72, 203–208.

    Article  CAS  PubMed  Google Scholar 

  71. S. Halford, J. Bellingham, L. Ocaka, M. Fox, S. Johnson, R. G. Foster, D. M. Hunt, Assignment of panopsin (opn3) to human chromosome band 1q43 by in situ hybridization and somatic cell hybrids, Cytogenet. Cell Genet., 2001, 95, 234–235.

    Article  CAS  PubMed  Google Scholar 

  72. P. Moutsaki, D. Whitmore, J. Bellingham, K. Sakamoto, Z. K. David-Gray, R. G. Foster, Teleost multiple tissue (tmt) opsin: A candidate photopigment regulating the peripheral clocks of zebrafish?, Brain Res. Mol. Brain Res., 2003, 112, 135–145.

    Article  CAS  PubMed  Google Scholar 

  73. J. Bellingham, A. G. Morris, D. M. Hunt, The rhodopsin gene of the cuttlefish sepia officinalis: Sequence and spectral tuning, J. Exp. Biol., 1998, 201, 2299–2306.

    Article  CAS  PubMed  Google Scholar 

  74. D. Whitmore, N. S. Foulkes, P. Sassone-Corsi, Light acts directly on organs and cells in culture to set the vertebrate circadian clock, Nature, 2000, 404, 87–91.

    Article  CAS  PubMed  Google Scholar 

  75. M. Jiang, S. Pandey, H. K. Fong, An opsin homologue in the retina and pigment epithelium, Invest. Ophthalmol. Vis. Sci., 1993, 34, 3669–3679.

    CAS  PubMed  Google Scholar 

  76. S. Pandey, J. C. Blanks, C. Spee, M. Jiang, H. K. Fong, Cytoplasmic retinal localization of an evolutionary homolog of the visual pigments, Exp. Eye Res., 1994, 58, 605–613.

    Article  CAS  PubMed  Google Scholar 

  77. W. Hao, H. K. Fong, Blue and ultraviolet light-absorbing opsin from the retinal pigment epithelium, Biochemistry, 1996, 35, 6251–6256.

    Article  CAS  PubMed  Google Scholar 

  78. W. Hao, H. K. Fong, The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium, J. Biol. Chem., 1999, 274, 6085–6090.

    Article  CAS  PubMed  Google Scholar 

  79. P. Chen, W. Hao, L. Rife, X. P. Wang, D. Shen, J. Chen, T. Ogden, G. B. Van Boemel, L. Wu, M. Yang, H. K. Fong, A photic visual cycle of rhodopsin regeneration is dependent on rgr, Nat. Genet., 2001, 3, 256–260.

    Article  CAS  Google Scholar 

  80. D. Shen, M. Jiang, W. Hao, L. Tao, M. Salazar, H. K. Fong, A human opsin-related gene that encodes a retinaldehyde-binding protein, Biochemistry, 1994, 33, 13117–13125.

    Article  CAS  PubMed  Google Scholar 

  81. L. Tao, D. Shen, S. Pandey, W. Hao, K. A. Rich, H. K. Fong, Structure and developmental expression of the mouse rgr opsin gene, Mol. Vis., 1998, 4, 25–30.

    CAS  PubMed  Google Scholar 

  82. Y. Nakashima, T. Kusakabe, R. Kusakabe, A. Terakita, Y. Shichida, M. Tsuda, Origin of the vertebrate visual cycle: Genes encoding retinal photoisomerase and two putative visual cycle proteins are expressed in whole brain of a primitive chordate, J. Comp. Neurol., 2003, 460, 180–190.

    Article  CAS  PubMed  Google Scholar 

  83. M. Tsuda, T. Kusakabe, H. Iwamoto, T. Horie, Y. Nakashima, M. Nakagawa, K. Okunou, Origin of the vertebrate visual cycle: Ii. Visual cycle proteins are localized in whole brain including photoreceptor cells of a primitive chordate, Vision Res., 2003, 43, 3045–3053.

    Article  CAS  PubMed  Google Scholar 

  84. M. J. Bailey, V. M. Cassone, Opsin photoisomerases in the chick retina and pineal gland: Characterization, localization, and circadian regulation, Invest. Ophthalmol. Vis. Sci., 2004, 45, 769–775.

    Article  PubMed  Google Scholar 

  85. H. Sun, D. J. Gilbert, N. G. Copeland, N. A. Jenkins, J. Nathans, Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium, Proc. Natl. Acad. Sci. USA, 1997, 94, 9893–9898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. A. Terakita, M. Koyanagi, H. Tsukamoto, T. Yamashita, T. Miyata, Y. Shichida, Counterion displacement in the molecular evolution of the rhodopsin family, Nat. Struct. Mol. Biol., 2004, 11, 284–289.

    Article  CAS  PubMed  Google Scholar 

  87. E. E. Tarttelin, J. Bellingham, M. W. Hankins, R. G. Foster, R. J. Lucas, Neuropsin (opn5): A novel opsin identified in mammalian neural tissue, FEBS Lett., 2003, 554, 410–416.

    Article  CAS  PubMed  Google Scholar 

  88. T. Kusakabe, R. Kusakabe, I. Kawakami, Y. Satou, N. Satoh, M. Tsuda, Ci-opsin1, a vertebrate-type opsin gene, expressed in the larval ocellus of the ascidian ciona intestinalis, FEBS Lett., 2001, 506, 69–72.

    Article  CAS  PubMed  Google Scholar 

  89. N. Oshima, Direct reception of light by chromatophores of lower vertebrates, Pigment Cell Res., 2001, 14, 312–319.

    Article  CAS  PubMed  Google Scholar 

  90. M. D. Rollag, Amphibian melanophores become photosensitive when treated with retinal, J. Exp. Zool., 1996, 275, 20–26.

    Article  CAS  Google Scholar 

  91. T. Moriya, Y. Miyashita, J. Arai, S. Kusunoki, M. Abe, K. Asami, Light-sensitive response in melanophores of xenopus laevis: I. Spectral characteristics of melanophore response in isolated tail fin of xenopus tadpole, J. Exp. Zool., 1996, 276, 11–18.

    Article  CAS  PubMed  Google Scholar 

  92. S. Batni, L. Scalzetti, S. A. Moody, B. E. Knox, Characterization of the xenopus rhodopsin gene, J. Biol. Chem., 1996, 271, 3179–3186.

    Article  CAS  PubMed  Google Scholar 

  93. I. Provencio, G. Jiang, W. J. DeGrip, W. P. Hayes, M. D. Rollag, Melanopsin: An opsin in melanophores, brain and eye, Proc. Natl. Acad. Sci. USA, 1998, 95, 340–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. M. D. Rollag, I. Provencio, D. Sugden, C. B. Green, Cultured amphibian melanophores: A model system to study melanopsin photobiology, Methods Enzymol., 2000, 316, 291–309.

    Article  CAS  PubMed  Google Scholar 

  95. Y. Miyashita, T. Moriya, K. Yamada, T. Kubota, S. Shirakawa, N. Fujii, K. Asami, The photoreceptor molecules in xenopus tadpole tail fin, in which melanophores exist, Zool. Sci., 2001, 18, 671–674.

    Article  CAS  Google Scholar 

  96. I. Provencio, I. R. Rodríguez, G. Jiang, W. P. Hayes, E. F. Moreira, M. D. Rollag, A novel human opsin in the inner retina, J. Neurosci., 2000, 20, 600–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. J. J. Gooley, J. Lu, T. C. Chou, T. E. Scammell, C. B. Saper, Melanopsin in cells of origin of the retinohypothalamic tract, Nat. Neurosci., 2001, 12, 1165.

    Article  Google Scholar 

  98. J. Hannibal, P. Hindersson, S. M. Knudsen, B. Georg, J. Fahrenkrug, The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract, J. Neurosci., 2002, 22 RC191, 191–197.

    Article  Google Scholar 

  99. M. Semo, S. Peirson, D. Lupi, R. J. Lucas, G. Jeffery, R. G. Foster, Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/ rd cl) mice, Eur. J. Neurosci., 2003, 17, 1793–1801.

    Article  PubMed  Google Scholar 

  100. M. Semo, D. Lupi, S. N. Peirson, J. N. Butler, R. G. Foster, Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/ rd cl) mice, Eur. J. Neurosci., 2003, 18, 3007–3017.

    Article  PubMed  Google Scholar 

  101. R. J. Lucas, S. Hattar, M. Takao, D. M. Berson, R. G. Foster, K. W. Yau, Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice, Science, 2003, 299, 245–247.

    Article  CAS  PubMed  Google Scholar 

  102. N. F. Ruby, T. J. Brennan, X. Xie, V. Cao, P. Franken, H. C. Heller, B. F. O’Hara, Role of melanopsin in circadian responses to light, Science, 2002, 298, 2211–2213.

    Article  CAS  PubMed  Google Scholar 

  103. S. Panda, T. K. Sato, A. M. Castrucci, M. D. Rollag, W. J. DeGrip, J. B. Hogenesch, I. Provencio, S. A. Kay, Melanopsin (opn4) requirement for normal light-induced circadian phase shifting, Science, 2002, 298, 2213–2216.

    Article  CAS  PubMed  Google Scholar 

  104. S. Panda, I. Provencio, D. C. Tu, S. S. Pires, M. D. Rollag, A. M. Castrucci, M. T. Pletcher, T. K. Sato, T. Wiltshire, M. Andahazy, S. A. Kay, R. N. Van Gelder, J. B. Hogenesch, Melanopsin is required for non-image-forming photic responses in blind mice, Science, 2003, 301, 525–527.

    Article  CAS  PubMed  Google Scholar 

  105. R. G. Foster, M. Hankins, R. J. Lucas, A. Jenkins, M. Munoz, S. Thompson, J. M. Appleford, J. Bellingham, Non-rod, non-cone photoreception in rodents and teleost fish, Novartis Found. Symp., 2003, 253, 3–23; discussion 23–30, 52–25, 102–109.

    CAS  PubMed  Google Scholar 

  106. L. A. Newman, M. T. Walker, R. L. Brown, T. W. Cronin, P. R. Robinson, Melanopsin forms a functional short-wavelength photopigment, Biochemistry, 2003, 42, 12734–12738.

    Article  CAS  PubMed  Google Scholar 

  107. S. Peirson, P. H. Bovee-Geurts, D. Lupi, G. Jeffery, W. J. DeGrip, R. G. Foster, Expression of the candidate circadian photopigment melanopsin (opn4) in the mouse retinal pigment epithelium, Mol. Brain Res., 2004, 123, 132–135.

    Article  CAS  PubMed  Google Scholar 

  108. J. Bellingham, R. G. Foster, Opsins and mammalian photoentrainment, Cell Tiss. Res., 2002, 309, 57–71.

    Article  CAS  Google Scholar 

  109. J. Bellingham, D. Whitmore, A. R. Philp, D. J. Wells, R. G. Foster, Zebrafish melanopsin: Isolation, tissue localisation and phylogenetic position, Brain Res. Mol. Brain Res., 2002, 107, 128–136.

    Article  CAS  PubMed  Google Scholar 

  110. O. Drivenes, A. M. Soviknes, L. O. Ebbesson, A. Fjose, H. C. Seo, J. V. Helvik, Isolation and characterization of two teleost melanopsin genes and their differential expression within the inner retina and brain, J. Comp. Neurol., 2003, 456, 84–93.

    Article  CAS  PubMed  Google Scholar 

  111. R. D. Fernald, Evolution of eyes, Curr. Opin. Neurobiol., 2000, 10, 444–450.

    Article  CAS  PubMed  Google Scholar 

  112. G. Wistow, Lens crystallins: Gene recruitment and evolutionary dynamism, Trends Biochem. Sci., 1993, 18, 301–306.

    Article  CAS  PubMed  Google Scholar 

  113. G. Wald, Molecular basis of visual excitiation, Science, 1968, 162, 230–239.

    Article  CAS  PubMed  Google Scholar 

  114. K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto, M. Miyano, Crystal structure of rhodopsin: A G protein-coupled receptor, Science, 2000, 289, 739–745.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, R.G., Bellingham, J. Inner retinal photoreceptors (IRPs) in mammals and teleost fish. Photochem Photobiol Sci 3, 617–627 (2004). https://doi.org/10.1039/b400092g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b400092g

Navigation