Issue 5, 2014

Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle

Abstract

Tissue engineering enables the generation of three-dimensional (3D) functional cardiac tissue for pre-clinical testing in vitro, which is critical for new drug development. However, current tissue engineering methods poorly recapitulate the architecture of oriented cardiac bundles with supporting capillaries. In this study, we designed a microfabricated bioreactor to generate 3D micro-tissues, termed biowires, using both primary neonatal rat cardiomyocytes and human embryonic stem cell (hESC) derived cardiomyocytes. Perfusable cardiac biowires were generated with polytetrafluoroethylene (PTFE) tubing template, and were integrated with electrical field stimulation using carbon rod electrodes. To demonstrate the feasibility of this platform for pharmaceutical testing, nitric oxide (NO) was released from perfused sodium nitroprusside (SNP) solution and diffused through the tubing. The NO treatment slowed down the spontaneous beating of cardiac biowires based on hESC derived cardiomyocytes and degraded the myofibrillar cytoskeleton of the cardiomyocytes within the biowires. The biowires were also integrated with electrical stimulation using carbon rod electrodes to further improve phenotype of cardiomyocytes, as indicated by organized contractile apparatus, higher Young's modulus, and improved electrical properties. This microfabricated platform provides a unique opportunity to assess pharmacological effects on cardiac tissue in vitro by perfusion in a cardiac bundle model, which could provide improved physiological relevance.

Graphical abstract: Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle

Supplementary files

Article information

Article type
Paper
Submitted
03 Oct 2013
Accepted
28 Nov 2013
First published
28 Nov 2013

Lab Chip, 2014,14, 869-882

Author version available

Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle

Y. Xiao, B. Zhang, H. Liu, J. W. Miklas, M. Gagliardi, A. Pahnke, N. Thavandiran, Y. Sun, C. Simmons, G. Keller and M. Radisic, Lab Chip, 2014, 14, 869 DOI: 10.1039/C3LC51123E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements