Skip to main content
Log in

UV-induced DNA damage and repair: a review

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Increases in ultraviolet radiation at the Earth’s surface due to the depletion of the stratospheric ozone layer have recently fuelled interest in the mechanisms of various effects it might have on organisms. DNA is certainly one of the key targets for UV-induced damage in a variety of organisms ranging from bacteria to humans. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) and their Dewar valence isomers. However, cells have developed a number of repair or tolerance mechanisms to counteract the DNA damage caused by UV or any other stressors. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also plays an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with UV-induced DNA damage and the associated repair mechanisms as well as methods of detecting DNA damage and its future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Blumthaler and W. Ambach, Indication of increasing solar ultraviolet-B radiation flux in alpine regions, Science, 1990, 248 206–208.

    Article  CAS  PubMed  Google Scholar 

  2. P. J. Crutzen, Ultraviolet on the increase, Nature, 1992, 356 104–105.

    Article  Google Scholar 

  3. J. B. Kerr, C. T. McElroy, Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion, Science, 1993, 262 1032–1034.

    Article  CAS  PubMed  Google Scholar 

  4. D. Lubin, E. H. Jensen, Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends, Nature, 1995, 377 710–713.

    Article  CAS  Google Scholar 

  5. J. B. Kerr, Decreasing ozone causes health concern, Environ. Sci. Technol., 1994, 28 514–518.

    Article  Google Scholar 

  6. News in brief, NASA encounters biggest-ever Antarctic ozone hole, Nature, 2000, 407 122.

  7. J. W. Elkins, T. M. Thompson, T. H. Swanson, J. H. Butler, B. D. Hall, S. O. Cummings, D. A. Fisher, A. G. Raffo, Decrease in the growth rates of atmospheric chlorofluorocarbons 11 and 12, Nature, 1993, 364 780–783.

    Article  CAS  Google Scholar 

  8. O. B. Toon, R. P. Turco, Polar stratospheric clouds and ozone depletion, Sci. Am., 1991, 264 68–74.

    Article  CAS  Google Scholar 

  9. A. Tabazadeh, M. L. Santee, M. Y. Danilin, H. C. Pumphrey, P. A. Newman, P. J. Hamill, J. L. Mergenthaler, Quantifying denitrification and its effect on ozone recovery, Science, 2000, 288 1407–1411.

    Article  CAS  PubMed  Google Scholar 

  10. S. Madronich, R. L. McKenzie, L. O. Björn, M. M. Caldwell, Changes in biologically active ultraviolet radiation reaching the Earth’s surface, J. Photochem. Photobiol., B, 1998, 46 5–19.

    Article  CAS  Google Scholar 

  11. G. J. Herndl, Role of ultraviolet radiation on bacterioplankton activity, in The Effects of Ozone Depletion on Aquatic Ecosystems, ed. D.-P. Häder, Environmental Intelligence Unit, Academic Press and R. G. Landes Company, Austin, 1997, pp. 143–154.

    Google Scholar 

  12. J. J. Cullen, P. J. Neale, M. P. Lesser, Biological weighting function for the inhibition of phytoplankton photosynthesis by ultraviolet radiation, Science, 1992, 258 646–650.

    Article  CAS  PubMed  Google Scholar 

  13. R. P. Sinha, D.-P. Häder, Photobiology and ecophysiology of rice field cyanobacteria, Photochem. Photobiol., 1996, 64 887–896.

    Article  CAS  Google Scholar 

  14. R. P. Sinha, N. Singh, A. Kumar, H. D. Kumar, M. Häder, D.-P. Häder, Effects of UV irradiation on certain physiological and biochemical processes in cyanobacteria, J. Photochem. Photobiol., B, 1996, 32 107–113.

    Article  CAS  Google Scholar 

  15. D.-P. Häder, H. D. Kumar, R. C. Smith, R. C. Worrest, Effects on aquatic ecosystems, J. Photochem. Photobiol., B, 1998, 46 53–68.

    Article  Google Scholar 

  16. J. F. Bornman, and A. H. Teramura, Effects of ultraviolet-B radiation on terrestrial plants, in Environmental UV-Photobiology, eds. A. R. Young, L. O. Björn, J. Moan and W. Nultsch, Plenum, New York, 1993, pp. 427–471.

    Chapter  Google Scholar 

  17. R. Klaper, S. Frankel, M. R. Berenbaum, Anthocyanin content and UVB sensitivity in Brassica napa, Photochem. Photobiol., 1996, 63 811–813.

    Article  CAS  Google Scholar 

  18. T. Ito, Photodynamic agents as tools for cell biology, in Photochemical and Photobiological Reviews, ed. K. C. Smith, Plenum, New York, 1983, pp. 141–186.

    Chapter  Google Scholar 

  19. R. G. Alscher, J. L. Donahue, C. L. Cramer, Reactive oxygen species and antioxidants: relationship in green cells, Physiol. Plant., 1997, 100 224–233.

    Article  CAS  Google Scholar 

  20. S. A.-H. Mackerness, B. R. Jordan and B. Thomas, Reactive oxygen species in the regulation of photosynthetic genes by ultraviolet-B radiation (UV-B: 280-320 nm) in green and etiolated buds of pea (Pisum sativum L.), J. Photochem. Photobiol., B, 1999, 48 180–188.

    Article  CAS  Google Scholar 

  21. M. J. Peak, J. G. Peak, Single-strand breaks induced in Bacillus subtilis DNA by ultraviolet light: action spectrum and properties, Photochem. Photobiol., 1982, 35 675–680.

    Article  CAS  PubMed  Google Scholar 

  22. M. J. Peak, J. G. Peak, P. Moehring, R. B. Webb, Ultraviolet action spectra for DNA dimer induction, lethality and mutagenesis in Escherichia coli with emphasis on the UVB region, Photochem. Photobiol., 1984, 40 613–620.

    Article  CAS  PubMed  Google Scholar 

  23. R. P. Sinha, M. Dautz, D.-P. Häder, A simple and efficient method for the quantitative analysis of thymine dimers in cyanobacteria, phytoplankton and macroalgae, Acta Protozool., 2001, 40 187–195.

    CAS  Google Scholar 

  24. A. G. J. Buma, E. J. van Hannen, L. Roza, M. J. W. Veldhuis, W. W. C. Gieskes, Monitoring ultraviolet-B induced DNA damage in individual diatom cells by immunofluorescent thymine dimer detection, J. Phycol., 1995, 51 314–321.

    Article  Google Scholar 

  25. A. G. J. Buma, M. K. de Boer and P. Boelen, Depth distribution of DNA damage in Antarctic marine phyto- and bacterioplankton exposed to summertime UV radiation, J. Phycol., 2001, 37 200–208.

    Article  CAS  Google Scholar 

  26. H. Pakker, C. A. C. Beekman, A. M. Breeman, Efficient photoreactivation of UVBR-induced DNA damage in the sublittoral macroalga Rhodymenia pseudopalmata (Rhodophyta), Eur. J. Phycol., 2000, 35 109–114.

    Article  Google Scholar 

  27. F. E. Quaite, B. M. Sutherland, J. C. Sutherland, Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion, Nature, 1992, 358 577–578.

    Article  Google Scholar 

  28. B. Stein, H. J. Rahmsdorf, A. Steffen, M. Litfin and P. Herrlich, UV-induced DNA damage is an intermediate step in UV-induced expression of human immunodeficiency virus type 1, collagenase, c-fos, and metallothionein, Mol. Cell. Biol., 1989, 9 5169–5181.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. M. L. Kripke, P. A. Cox, L. G. Alas, D. B. Yarosh, Pyrimidine dimers in DNA initiate systemic suppression in UV-irradiated mice, Proc. Natl. Acad. Sci. U. S. A., 1992, 89 7516–7520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R. P. Sinha, M. Klisch, A. Gröniger, D.-P. Häder, Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae, J. Photochem. Photobiol., B, 1998, 47 83–94.

    Article  CAS  Google Scholar 

  31. A. B. Britt, Repair of DNA damage induced by ultraviolet radiation, Plant Physiol., 1995, 108 891–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Lindahl, Instability and decay of the primary structure of DNA, Nature, 1993, 362 709–715.

    Article  CAS  PubMed  Google Scholar 

  33. A. B. Britt, DNA damage and repair in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1996, 47 75–100.

    Article  CAS  PubMed  Google Scholar 

  34. K. K. Singh, The Saccharomyces cerevisiae Slnlp-SsklP2-component system mediates response to oxidative stress and in an oxidant-specific fashion, Free Radical Biol. Med., 2000, 29 1043–1050.

    Article  CAS  Google Scholar 

  35. D. Touati, Iron and oxidative stress in bacteria, Arch. Biochem. Biophys., 2000, 373 1–6.

    Article  CAS  PubMed  Google Scholar 

  36. D. L. Mitchell, and D. Karentz, The induction and repair of DNA photodamage in the environment, in Environmental UV Photobiology, eds. A. R. Young, L. Björn, J. Moan and W. Nultsch, Plenum, New York, 1993, pp. 345–377.

    Chapter  Google Scholar 

  37. H. Y. You, P. E. Szabo, G. P. Pfeifer, Cyclobutane pyrimidine dimers form preferentially at the major p53 mutational hotspot in UVB-induced mouse skin tumors, Carcinogenesis, 2000, 21 2113–2117.

    Article  CAS  PubMed  Google Scholar 

  38. E. C. Friedberg, G. C. Walker and W. Siede, DNA repair and mutagenesis,. ASM Press, Washington DC, 1995,.

    Google Scholar 

  39. J. H. Yoon, C. S. Lee, T. R. Oconnor, A. Yasui, G. P. Pfeifer, The DNA damage spectrum produced by simulated sunlight, J. Mol. Biol., 2000, 299 681–693.

    Article  CAS  PubMed  Google Scholar 

  40. P. H. Clingen, C. F. Arlett, L. Roza, T. Mori, O. Nikaido, M. H. L. Green, Induction of cyclobutane pyrimidine dimers, pyrimidine(6-4)pyrimidone photoproducts, and Dewar valence isomers by natural sunlight in normal human mononuclear cells, Cancer Res., 1995, 55 2245–2248.

    CAS  PubMed  Google Scholar 

  41. T. Lindahl, R. D. Wood, Quality control by DNA repair, Science, 1999, 286 1897–1905.

    Article  CAS  PubMed  Google Scholar 

  42. T. Matsunaga, Y. Hatakeyama, M. Ohta, T. Mori and O. Nikaido, Establishment and characterization of a monoclonal-antibody recognising the Dewar isomers of (6-4) photoproducts, Photochem. Photobiol., 1993, 57 934–940.

    Article  CAS  PubMed  Google Scholar 

  43. D. L. Mitchell, B. S. Rosenstein, The use of specific radioimmunoassays to determine action spectra for the photolysis of (6-4) photoproducts, Photochem. Photobiol., 1987, 45 781–786.

    Article  CAS  PubMed  Google Scholar 

  44. J. Taylor, H. Lu, J. J. Kotyk, Quantitative conversion of the (6-4) photoproduct of TpdC to its Dewar valence isomer upon exposure to simulated sunlight, Photochem. Photobiol., 1990, 51 161–167.

    Article  CAS  PubMed  Google Scholar 

  45. J. K. Kim, D. Patel, B. S. Choi, Contrasting structural impacts induced by cis-syn cyclobutane dimer and (6-4) adduct in DNA duplex decamers: implication in mutagenesis and repair activity, Photochem. Photobiol., 1995, 62 44–50.

    Article  CAS  PubMed  Google Scholar 

  46. C. I. Wang, J. S. Taylor, Site-specific effect of thymine dimer formation on dAn.dTn tract bending and its biological implications, Proc. Natl. Acad. Sci. U. S. A., 1991, 88 9072–9076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. M. M. Becker and Z. Wang, Origin of ultraviolet damage in DNA, J. Mol. Biol., 1989, 210 429–438.

    Article  CAS  PubMed  Google Scholar 

  48. V. Lyamichev, Unusual conformation of (dA)n.(dT)n-tracts as revealed by cyclobutane thymine-thymine dimer formation, Nucleic Acids Res., 1991, 19 4491–4496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J. R. Pehrson, L. H. Cohen, Effects of DNA looping on pyrimidine dimer formation, Nucleic Acid Res., 1992, 20 1321–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. A. Aboussekhra and F. Thoma, TATA-binding protein promotes the selective formation of UV-induced (6-4)-photoproducts and modulates DNA repair in the TATA box, EMBO J., 1999, 18 433–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D. L. Mitchell, J. E. Vaughan, R. S. Nairn, Inhibition of transient gene expression in Chinese hamster ovary cells by cyclobutane dimers and (6-4) photoproducts in transfected ultraviolet-irradiated plasmid DNA, Plasmid, 1989, 21 21–30.

    Article  CAS  PubMed  Google Scholar 

  52. M. Protic-Sabljic, K. H. Kraemer, One pyrimidine dimer inactivates expression of a transfected gene in Xeroderma pigmentosum cells, Proc. Natl. Acad. Sci. U. S. A., 1986, 82 6622–6626.

    Article  Google Scholar 

  53. B. A. Donahue, S. Yin, J. S. Taylor, D. Reines, P. C. Hanawalt, Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template, Proc. Natl. Acad. Sci. U. S. A., 1994, 91 8502–8506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. B.-B. S. Zhou, S. J. Elledge, The DNA damage response: putting checkpoints in perspective, Nature, 2000, 408 433–439.

    Article  CAS  PubMed  Google Scholar 

  55. T. Carell and R. Epple, Repair of UV light induced DNA lesions: a comparative study with model compounds, Eur. J. Org. Chem., 1998, 1245–1258.

    Google Scholar 

  56. F. Thoma, Light, dark in chromatin repair: repair of UV-induced DNA lesions by photolyase and nucleotide excision repair, EMBO J., 1999, 18 6585–6598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. A. Sancar, Structure and function of DNA photolyase, Biochemistry, 1994, 33 2–9.

    Article  CAS  PubMed  Google Scholar 

  58. S.-T. Kim, K. Malhotra, C. A. Smith, J.-S. Taylor and A. Sancar, Characterization of (6-4) photoproduct DNA photolyase, J. Biol. Chem., 1994, 269 8535–8540.

    Article  CAS  PubMed  Google Scholar 

  59. A. Sancar, No “end of history” for photolyases, Science, 1996, 272 48–49.

    Article  CAS  PubMed  Google Scholar 

  60. T. Todo, S.-T. Kim, K. Hitomi, E. Otoshi, T. Inui, H. Morioka, H. Kobayashi, E. Ohtsuka, H. Toh and M. Ikenaga, Flavin adenine dinucleotide as a chromophore of the Xenopus (6-4) photolyase, Nucleic Acids Res., 1997, 25 764–768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. A. Yasui, A. P. M. Eker, S. Yasuhira, H. Yajima, T. Kobayashi, M. Takao and A. Oikawa, A new class of DNA photolyases present in various organisms including aplacental mammals, EMBO J., 1994, 13 6143–6151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. T. Todo, Functional diversity of the DNA photolyase/blue light receptor family, Mutat. Res., 1999, 434 89–97.

    Article  CAS  PubMed  Google Scholar 

  63. H. W. Park, S.-T. Kim, A. Sancar and J. Deisenhofer, Crystal structure of DNA photolyase from Escherichia coli, Science, 1995, 268 1866–1872.

    Article  CAS  PubMed  Google Scholar 

  64. T. Tamada, K. Kitadokoro, Y. Higuchi, K. Inaka, A. Yasui, P. E. de Ruiter, A. P. Eker and K. Miki, Crystal structure of DNA photolyase from Anacystis nidulans, Nat. Struct. Biol., 1997, 4 887–891.

    Article  CAS  PubMed  Google Scholar 

  65. G. B. Sancar, F. W. Smith, R. Reid, G. Payne, M. Levy and A. Sancar, Action mechanism of Escherichia coli DNA photolyase. I. Formation of the enzyme-substrate complex, J. Biol. Chem., 1987, 262 478–485.

    Article  CAS  PubMed  Google Scholar 

  66. H. Yajima, H. Inoue, A. Oikawa and A. Yasui, Cloning and functional characterization of a eukaryotic DNA photolyase gene from Neurospora crassa, Nucleic Acids Res., 1991, 19 5359–5362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. W.-O. Ng, R. Zentella, Y. Wang, J.-S. A. Taylor, H. B. Pakrasi, phrA, the major photoreactivating factor in the cyanobacterium Synechocystis sp. strain PCC 6803 codes for a cyclobutane-pyrimidine-dimer-specific DNA photolyase, Arch. Microbiol., 2000, 173 412–417.

    Article  CAS  PubMed  Google Scholar 

  68. T. Todo, H. Takemori, H. Ryo, M. Ihara, T. Matsunaga, O. Nikaido, K. Sato and T. Nomura, A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4) photoproducts, Nature, 1993, 361 371–374.

    Article  CAS  PubMed  Google Scholar 

  69. M. Ahmad, A. R. Cashmore, The HY4 gene of Arabidopsis thaliana encodes a protein with characteristics of a blue-light receptor, Nature, 1993, 366 162–166.

    Article  CAS  PubMed  Google Scholar 

  70. A. Batschauer, A plant gene for photolyase: an enzyme catalyzing the repair of UV-light induced DNA damage, Plant J., 1993, 4 705–709.

    Article  CAS  PubMed  Google Scholar 

  71. K. Malhotra, S.-T. Kim, A. Batschauer, L. Dawut and A. Sancar, Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactor but lack DNA repair activity, Biochemistry, 1995, 34 6892–6899.

    Article  CAS  PubMed  Google Scholar 

  72. T. Todo, H. Ryo, K. Yamamoto, H. Toh, T. Inui, H. Ayaki, T. Nomura and M. Ikenaga, Similarity among the Drosophila (6-4) photolyase, a human photolyase homology, and the DNA photolyase-blue-light photoreceptor family, Science, 1996, 272 109–112.

    Article  CAS  PubMed  Google Scholar 

  73. P. J. van der Spek, K. Kobayashi, D. Bootsma, M. Takao, A. P. M. Eker and A. Yasui, Cloning, tissue expression and mapping of a human photolyase homology with similarity to plant blue-light receptors, Genomics, 1996, 37 177–182.

    Article  PubMed  Google Scholar 

  74. D. S. Hsu, X. Zhao, S. Zhao, A. Kazantsev, R.-P. Wang, T. Todo, Y.-F. Wei and A. Sancar, Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins, Biochemistry, 1996, 35 13871–13877.

    Article  CAS  PubMed  Google Scholar 

  75. H. Harm, in Photochemistry and Photobiology of Nucleic Acids, ed. S.-Y. Wang, Academic Press, New York, 1976, pp. 219–263.

  76. K. Yamamoto, Y. Fujiwara and H. Shinagawa, Evidence that the phr+ gene enhances the ultraviolet resistance of Escherichia coli recA strains in the dark, Mol. Gen. Genet., 1983, 192 282–284.

    Article  CAS  PubMed  Google Scholar 

  77. G. B. Sancar, F. W. Smith, Interactions between yeast photolyase and nucleotide excision repair proteins in Saccharomyces cerevisiae and Escherichia coli, Mol. Cell. Biol., 1989, 9 4767–4776.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. A. Sancar, F. W. Smith, G. B. Sancar, Purification of Escherichia coli DNA photolyase, J. Biol. Chem., 1984, 259 6028–6032.

    Article  CAS  PubMed  Google Scholar 

  79. M. E. Fox, B. J. Feldman and G. Chu, A novel role for DNA photolyase: binding to DNA damaged by drugs is associated with enhanced cytotoxicity in Saccharomyces cerevisiae, Mol. Cell. Biol., 1994, 14 8071–8077.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Z. özer, J. T. Reardon, D. S. Hsu, K. Malhotra and A. Sancar, The other function of DNA photolyase: stimulation of excision repair of chemical damage to DNA, Biochemistry, 1995, 341 5886–15889.

    Google Scholar 

  81. R. J. Roberts, On base flipping, Cell, 1995, 82 9–12.

    Article  CAS  PubMed  Google Scholar 

  82. K. M. Reinisch, L. Chen, G. L. Verdine, W. N. Lipscomb, The crystal structure of HaeIII methyltransferase covalently complexed to DNA: an extrahelical cytosine and rearranged base pairing, Cell, 1995, 82 143–153.

    Article  CAS  PubMed  Google Scholar 

  83. H. C. M. Nelson, T. H. Bestor, Base eversion and shuffling by DNA methyltransferases, Chem. Biol., 1996, 3 419–423.

    Article  CAS  PubMed  Google Scholar 

  84. P. F. Heelis, T. Okamura and A. Sancar, Excited-state properties of Escherichia coli DNA photolyase in the picosecond to millisecond time scale, Biochemistry, 1990, 29 5694–5698.

    Article  CAS  PubMed  Google Scholar 

  85. Y. F. Li, P. F. Heelis and A. Sancar, Active site of DNA photolyase: tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro, Biochemistry, 1991, 30 6322–6329.

    Article  CAS  PubMed  Google Scholar 

  86. C. Essenmacher, S.-T. Kim, M. Atamian, G. T. Babcock and A. Sancar, Tryptophan radical formation in DNA photolyase: electron spin polarization arising from photoexcitation of a doublet ground state, J. Am. Chem. Soc., 1993, 115 1602–1603.

    Article  CAS  Google Scholar 

  87. C. Aubert, M. H. Vos, P. Mathis, A. P. M. Eker and K. Brettel, Intraprotein radical transfer during photoactivation of DNA photolyase, Nature, 2000, 405 586–590.

    Article  CAS  PubMed  Google Scholar 

  88. S.-T. Kim, K. Malhotra, C. A. Smith, J.-S. Taylor and A. Sancar, DNA photolyase repairs the trans-syn cyclobutane thymine dimer, Biochemistry, 1993, 32 7065–7068.

    Article  CAS  PubMed  Google Scholar 

  89. S. Prakash, P. Sung and L. Prakash, DNA repair genes and proteins of Saccharomyces cerevisiae, Annu. Rev. Genet., 1993, 27 33–70.

    Article  CAS  PubMed  Google Scholar 

  90. A. Sancar, DNA excision repair, Annu. Rev. Biochem., 1996, 65 43–81.

    Article  CAS  PubMed  Google Scholar 

  91. A. R. Lehmann, Nucleotide excision repair and the link with transcription, Trends Biochem. Sci., 1995, 20 402–405.

    Article  CAS  PubMed  Google Scholar 

  92. E. Seeberg, L. Eide, M. Bjørås, The base excision repair pathway, Trends Biochem. Sci., 1995, 20 391–397.

    Article  CAS  PubMed  Google Scholar 

  93. K. Sakumi and M. Sekiguchi, Structures and functions of DNA glycosylases, Mutat. Res., 1990, 236 161–162.

    Article  CAS  PubMed  Google Scholar 

  94. Y. Matsumoto and K. Kim, Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair, Science, 1995, 269 699–702.

    Article  CAS  PubMed  Google Scholar 

  95. T. Lindahl, Proc. Natl. Acad. Sci. U. S. A., 1974, 71 3649–3653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Z. Hatahet, Y. W. Kow, A. A. Purmal, R. P. Cunningham, S. S. Wallace, New substrates for old enzymes: 5-hydroxy-2’-deoxycytidine and 5-hydroxy-2’-deoxyuridine are substrates for Escherichia coli endonuclease III and formamido pyrimidine DNA N-glycosylase while 5-hydroxy-2’-deoxyuridine is a substrate for uracil DNA N-glycosylase, J. Biol. Chem., 1994, 269 18814–18820.

    Article  CAS  PubMed  Google Scholar 

  97. L. C. Olsen, R. Aasland, C. U. Wittwer, H. E. Krokan, D. E. Helland, Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme, EMBO J., 1989, 8 3121–3125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. C. D. Mol, A. S. Arvai, G. Slupphaug, B. Kavli, I. Alseth, H. E. Krokan, J. A. Tainer, Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis, Cell, 1995, 80 869–878.

    Article  CAS  PubMed  Google Scholar 

  99. R. Savva, K. McAuley-Hecht, T. Brown and L. Pearl, The structural basis of specific base-excision repair by uracil-DNA glycosylase, Nature, 1995, 373 487–493.

    Article  CAS  PubMed  Google Scholar 

  100. L. H. Pearl and S. Renos, DNA repair in three dimensions, Trends Biochem. Sci., 1995, 20 421–426.

    Article  CAS  PubMed  Google Scholar 

  101. A. M. Bones, Expression and occurrence of uracil-DNA glycosylase in higher plants, Phys. Plant., 1993, 88 682–688.

    Article  CAS  Google Scholar 

  102. M. Talpaert-Borle, Formation, detection, and repair of AP sites, Mutat. Res., 1987, 181 45–56.

    Article  CAS  PubMed  Google Scholar 

  103. C. Gutierrez, Excision repair of uracil in higher plant cells: uracil-DNA glycosylase and sister-chromatid exchange, Mutat. Res., 1987, 181 111–126.

    Article  CAS  Google Scholar 

  104. P. Karran, T. Hjelmgren and T. Lindahl, Induction of a DNA glycosylase for N-methylated purines is part of the adaptive response to alkylating agents, Nature, 1982, 296 770–773.

    Article  CAS  PubMed  Google Scholar 

  105. G. Evensen and E. Seeberg, Adaptation to alkylation resistance involves the induction of a DNA glycosylase, Nature, 1982, 296 773–775.

    Article  CAS  PubMed  Google Scholar 

  106. M. Bjørås, A. Klungland, R. F. Johansen and E. Seeberg, Purification and properties of the alkylation repair DNA glycosylase encoded by the MAG gene from Saccharomyces cerevisiae, Biochemistry, 1995, 34 4577–4583.

    Article  PubMed  Google Scholar 

  107. M. Sparbear and J. Laval, Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases, Proc. Natl. Acad. Sci. U. S. A., 1994, 91 5873–5877.

    Article  Google Scholar 

  108. T. R. O’Connor and J. Laval, Isolation and structure of a cDNA expressing a mammalian 3-methyladenine-DNA glycosylase, EMBO J., 1990, 9 3337–3342.

    Article  PubMed  PubMed Central  Google Scholar 

  109. T. R. O’Connor and J. Laval, Human cDNA expressing a functional DNA glycosylase excising 3-methyladenine and 7-methylguanine, Biochem. Biophys. Res. Commun., 1991, 176 1170–1177.

    Article  PubMed  Google Scholar 

  110. B. P. Engelward, M. S. Boosalis, B. J. Chen, Z. Deng, M. J. Siciliano, L. D. Samson, Cloning and characterization of a mouse 3-methyladenine 7-methylguanine 3-methylguanine DNA glycosylase whose gene maps to chromosome 11, Carcinogenesis, 1993, 14 175–181.

    Article  CAS  PubMed  Google Scholar 

  111. A. Santerre, A. B. Britt, Cloning of a 3-methyladenine- DNA glycosylase from Arabidopsis thaliana, Proc. Natl. Acad. Sci. U. S. A., 1994, 91 2240–2244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. K. G. Berdel, M. Bjørås, S. Bjelland and E. Seeberg, Cloning and expression in E. coli of a gene for an alkylbase DNA glycosylase from S. cerevisiae: a homolog to the bacterial alkA gene, EMBO J., 1990, 9 4563–4568.

    Article  Google Scholar 

  113. J. Chen, B. Derfler and L. Samson, Saccharomyces cerevisiae 3-methyladenine DNA glycosylase has homology to the AlkA glycosylase of E. coli and is induced in response to DNA alkylation damage, EMBO J., 1990, 9 4569–4575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. K. Morikawa, M. Ariyoshi, D. G. Vassylyev, O. Matsumoto, K. Katayanagi and E. Ohtsuka, Crystal structure of a pyrimidine dimer-specific excision repair enzyme from bacteriophage T4: refinement at 1.45 å and X-ray analysis of the three active site mutants, J. Mol. Biol., 1995, 249 360–375.

    Article  CAS  PubMed  Google Scholar 

  115. M. L. Dodson, R. D. Schrock III, R. S. Lloyd, Evidence for an imino intermediate in the in the T4 endonuclease V reaction, Biochemistry, 1993, 32 8284–8290.

    Article  CAS  PubMed  Google Scholar 

  116. M. L. Dodson, M. L. Michaels, R. S. Lloyd, Unified catalytic mechanism for DNA glycosylases, J. Biol. Chem., 1994, 269 32709–32712.

    Article  CAS  PubMed  Google Scholar 

  117. K. K. Hamilton, P. M. H. Kim, P. W. Doetsch, A eukaryotic DNA glycosylase/lyase recognizing ultraviolet light-induced pyrimidine dimers, Nature, 1992, 356 725–728.

    Article  CAS  PubMed  Google Scholar 

  118. K. K. Bowman, K. Sidik, C. A. Smith, J.-S. Taylor, P. W. Doetsch, G. A. Freyer, A new ATP-dependent DNA endonuclease from S. pombe that recognizes cyclobutane pyrimidine dimers and 6-4 photoproducts, Nucleic Acids Res., 1994, 22 3026–3032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. H. Yajima, M. Takao, S. Yasuhira, J. H. Zhao, C. Ishii, H. Inoue and A. Yasui, A eukaryotic gene encoding an endonuclease that specifically repairs DNA damaged by ultraviolet light, EMBO J., 1995, 14 2393–2399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. P. W. Doetsch, W. H. McCray, M. R. L. Valenzula, Partial purification and characterization of an endonuclease from spinach that cleaves ultraviolet-light damaged duplex DNA, Biochim. Biophys. Acta, 1989, 1007 309–317.

    Article  CAS  PubMed  Google Scholar 

  121. T. M. Murphy, C. P. Martin and J. Kami, Endonuclease activity from tobacco nuclei specific for ultraviolet radiation-damaged DNA, Physiol. Plant., 1993, 87 417–425.

    Article  CAS  Google Scholar 

  122. J. Veleminsky, J. Svachulova and J. Satava, Endonucleases for UV-irradiated and depurinated DNA in barley chloroplasts, Nucleic Acids Res., 1980, 8 1373–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. J. A. Strickland, L. G. Marzilli, J. M. Puckett, P. W. Doetsch, Purification and properties of Nuclease SP, Biochemistry, 1991, 30 9749–9756.

    Article  CAS  PubMed  Google Scholar 

  124. S. Boiteux, E. Gajewski, J. Laval and M. Dizdaroglu, Substrate specificity of the Escherichia coli Fpg protein (formamidopyrimidine-DNA glycosylase): excision of purine lesions in DNA produced by ionizing radiation or photosensitization, Biochemistry, 1992, 31 106–110.

    Article  CAS  PubMed  Google Scholar 

  125. J. Tchou, V. Bodepudi, S. Shibutani, I. Antoshechkin, J. Miller, A. P. Grollman and F. Johnson, Substrate specificity of Fpg protein, J. Biol. Chem., 1994, 269 15318–15324.

    Article  CAS  PubMed  Google Scholar 

  126. C.-F. Kuo, D. E. McRee, C. L. Fisher, S. F. O’Handley, R. P. Cunningham, J. A. Tainer, Atomic structure of the DNA repair [4Fe-4S] enzyme endonuclease III, Science, 1992, 258 434–440.

    Article  CAS  PubMed  Google Scholar 

  127. R. J. Melamede, Z. Hatahet, Y. W. Kow, H. Ide, S. S. Wallace, Isolation and characterization of endonuclease VIII from Escherichia coli, Biochemistry, 1994, 33 1255–1264.

    Article  CAS  PubMed  Google Scholar 

  128. M. L. Michaels, C. Cruz, A. P. Grollman, J. H. Miller, Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA, Proc. Natl. Acad. Sci. U. S. A., 1992, 89 7022–7025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. H. Kasai, A. Iida, Z. Yamaizumi, S. Nishimura and H. Tanooka, 5-Formyldeoxyuridine: a new type of DNA damage induced by ionizing radiation and its mutagenicity to Salmonella strain TA102, Mutat. Res., 1990, 243 249–253.

    Article  CAS  PubMed  Google Scholar 

  130. S. Bjelland, N.-K. Birkeland, T. Benneche, G. Volden and E. Seeberg, DNA glycosylase activity for thymine residues oxidized in the methyl group are functions of the AlkA enzyme in Escherichia coli, J. Biol. Chem., 1994, 269 30489–30495.

    Article  CAS  PubMed  Google Scholar 

  131. R. J. Boorstein, L. N. Chiu, G. W. Teebor, A mammalian cell line deficient in activity of the DNA repair enzyme 5-hydroxymethyluracil-DNA glycosylase is resistant to the toxic effects of the thymidine analog 5-hydroxymethyl-2’-deoxyuridine, Mol. Cell. Biol., 1992, 12 5536–5540.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. H. E. Krokan, R. Standal and G. Slupphaug, DNA glycosylases in the base excision repair of DNA, Biochem. J., 1997, 325 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. R. P. Cunningham, DNA glycosylases, Mutat. Res., 1997, 383 189–196.

    Article  CAS  PubMed  Google Scholar 

  134. S. S. Parikh, C. D. Mol, J. A. Tainer, Base excision repair enzyme family portrait: integrating the structure and chemistry of an entire DNA repair pathway, Structure, 1997, 5 1543–1550.

    Article  CAS  PubMed  Google Scholar 

  135. E. C. Friedberg, Relationships between DNA repair and transcription, Annu. Rev. Biochem., 1996, 65 15–42.

    Article  CAS  PubMed  Google Scholar 

  136. W. L. de Laat, N. G. Jaspers, J. H. Hoeijmakers, Molecular mechanism of nucleotide excision repair, Genes Dev., 1999, 13 768–785.

    Article  PubMed  Google Scholar 

  137. S. N. Guzder, P. Sung, L. Prakash and S. Prakash, Synergistic interaction between yeast nucleotide excision repair factors NEF2 and NEF4 in the binding of ultraviolet-damaged DNA, J. Biol. Chem., 1999, 274 24257–24262.

    Article  CAS  PubMed  Google Scholar 

  138. K. Sugasawa, J. M. Ng, C. Masutani, S. Iwai, P. J. van der Spek, A. P. Eker, F. Hanaoka, D. Bootsma, J. H. Hoeijmakers, Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair, Mol. Cell, 1998, 2 223–232.

    Article  CAS  PubMed  Google Scholar 

  139. P. Robins, C. J. Jones, M. Biggerstaff, T. Lindahl, R. D. Wood, Complementation of DNA repair in Xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA, EMBO J., 1991, 10 3913–3921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. S. N. Guzder, P. Sung, L. Prakash and S. Prakash, Yeast DNA-repair gene Rad14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA, Proc. Natl. Acad. Sci. U. S. A., 1993, 90 5433–5437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. H. Naegeli, L. Bardwell, E. C. Friedberg, The DNA helicase and adenosine triphosphate activities of yeast Rad3 protein are inhibited by DNA damage−a potential mechanism for damage specific recognition, J. Biol. Chem., 1992, 267 392–398.

    Article  CAS  PubMed  Google Scholar 

  142. S. Nocentini, Rejoining kinetics of DNA single-and double-strand breaks in normal and DNA ligase-deficient cells after exposure to ultraviolet C and gamma radiation: an evaluation of ligating activities involved in different DNA repair processes, Radiat. Res., 1999, 151 423–432.

    Article  CAS  PubMed  Google Scholar 

  143. M. Wakasugi and A. Sancar, Order of assembly of human DNA repair excision nuclease, J. Biol. Chem., 1999, 274 18759–18768.

    Article  CAS  PubMed  Google Scholar 

  144. S. N. Guzder, P. Sung, L. Prakash and S. Prakash, Yeast Rad7-Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP dependent DNA damage sensor, J. Biol. Chem., 1997, 272 21665–21668.

    Article  CAS  PubMed  Google Scholar 

  145. G.P. Howland, Dark-repair of ultraviolet-induced pyrimidine dimers in the DNA of wild carrot protoplasts, Nature, 1975, 254 160–161.

    Article  CAS  PubMed  Google Scholar 

  146. G. P. Howland, R. W. Hart, Radiation biology of cultured plant cells, in Applied Aspects of Plant Cell Tissue and Organ Culture, eds. J. Reinert and Y. P. S. Bajaj, Springer-Verlag, Berlin, 1977, pp. 731–789.

    Google Scholar 

  147. J. J. Reilly, W. L. Klarman, Thymine dimer and glyceolin accumulation in UV-irradiated soybean suspension cultures, J. Environ. Exp. Bot., 1980, 20 131–133.

    Article  CAS  Google Scholar 

  148. O. I. Kovalsky, L. Grossman and B. Ahn, The photodynamics of incision of UV-irradiated covalently closed DNA by the Escherichia coli Uvr(A)BC endonuclease, J. Biol. Chem., 1996, 271 33236–33241.

    Article  CAS  PubMed  Google Scholar 

  149. Y. Zou, B. Van Houten, Strand opening of the UvrA2B complex allows dynamic recognition of DNA damage, EMBO J., 1999, 18 4889–4901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. J. E. Cleaver, Stopping DNA replication in its tracks, Science, 1999, 285 212–213.

    Article  CAS  PubMed  Google Scholar 

  151. E. C. Friedberg, V. L. Gerlach, Novel DNA polymerases offer clues to the molecular basis of mutagenesis, Cell, 1999, 98 413–416.

    Article  CAS  PubMed  Google Scholar 

  152. R. E. Johnson, M. T. Washington, S. Prakash and L. Prakash, Bridging the gap: a family of novel DNA polymerases that replicate faulty DNA, Proc. Natl. Acad. Sci. U. S. A., 1999, 96 12224–12226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. R. Woodgate, A plethore of lesion-replicating DNA polymerases, Genes Dev., 1999, 13 2191–2195.

    Article  CAS  PubMed  Google Scholar 

  154. M. F. Goodman and B. Tippin, Sloppier copier DNA polymerases involved in genome repair, Curr. Opin. Genet. Dev., 2000, 10 162–168.

    Article  CAS  PubMed  Google Scholar 

  155. A. R. Lehmann, Replication of UV-damaged DNA: new insights into links between DNA polymerases, mutagenesis and human disease, Gene, 2000, 253 1–12.

    Article  CAS  PubMed  Google Scholar 

  156. T. A. Steitz, DNA polymerases: structural diversity and common mechanisms, J. Biol. Chem., 1999, 274 17395–17398.

    Article  CAS  PubMed  Google Scholar 

  157. V. L. Gerlach, L. Aravind, G. Gotway, R. A. Schultz, E. V. Koonin, E. C. Friedberg, Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily, Proc. Natl. Acad. Sci. U. S. A., 1999, 96 11922–11927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. J. P. McDonald, V. Rapic-Otrin, J. A. Epstein, B. C. Broughton, X. Wang, A. R. Lehmann, D. J. Wolgemuth and R. Woodgate, Novel human and mouse homologs of Saccharomyces cerevisiae DNA polymerase eta, Genomics, 1999, 60 20–30.

    Article  CAS  PubMed  Google Scholar 

  159. G. C. Walker, SOS-regulated proteins in translesion DNA synthesis and mutagenesis, Trends Biochem. Sci., 1995, 20 416–420.

    Article  CAS  PubMed  Google Scholar 

  160. M. Rajagopalan, C. Lu, R. Woodgate, M. O’Donnell, M. F. Goodman and H. Echols, Activity of the purified mutagenesis proteins UmuC, UmuD, and RecA in replicative bypass of an abasic DNA lesion by DNA polymerase III, Proc. Natl. Acad. Sci. U. S. A., 1992, 89 10777–10781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. C. Masutani, R. Kusumoto, S. Iwai and F. Hanaoka, Mechanisms of accurate translesion synthesis by human DNA polymerase?, EMBO J., 2000, 19 3100–3109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. M. T. Washington, R. E. Johnson, S. Prakash and L. Prakash, Accuracy of thymine-thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase?, Proc. Natl. Acad. Sci. U. S. A., 2000, 97 3094–3099.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. R. E. Johnson, S. Prakash and L. Prakash, Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, pol?, Science, 1999, 283 1101–1104.

    Article  Google Scholar 

  164. J. R. Nelson, C. W. Lawrence, D. C. Hinkle, Thymine-thymine dimer bypass by yeast DNA polymerase?, Science, 1996, 272 1646–1649.

    Article  CAS  PubMed  Google Scholar 

  165. P. E. Gibbs, W. G. McGregor, V. M. Maher, P. Nisson, C. W. Lawrence, A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase?, Proc. Natl. Acad. Sci. U. S. A., 1998, 95 6876–6880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. C. Morelli, A. J. Mungall, M. Negrini, G. Barbanti-Brodano, C. M. Croce, Alternative splicing, genomic structure and fine chromosome localization of REV3L, Cytogenet. Cell Genet., 1998, 83 18–20.

    Article  CAS  PubMed  Google Scholar 

  167. W. Xiao, T. Lechler, B. L. Chow, T. Fontanie, M. Agustus, K. C. Carter, Y. F. Wei, Identification, chromosomal mapping and tissue-specific expression of hREV3 encoding a putative human DNA polymerase?, Carcinogenesis, 1998, 19 945–949.

    Article  CAS  PubMed  Google Scholar 

  168. W. Lin, X. Wu and Z. Wang, A full-length cDNA of hREV3 is predicted to encode DNA polymerase? for damage-induced mutagenesis in humans, Mutat. Res., 1999, 433 89–98.

    Article  CAS  PubMed  Google Scholar 

  169. Y. Murakumo, T. Roth, H. Ishii, D. Rasio, S. Numata, C. M. Crose and R. Fishel, A human REV7 homolog that interacts with the polymerase? catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2, J. Biol. Chem., 2000, 275 4391–4397.

    Article  CAS  PubMed  Google Scholar 

  170. A. Tissier, E. G. Frank, J. P. McDonald, S. Iwai, F. Hanaoka and R. Woodgate, Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase?, EMBO J., 2000, 19 5259–5266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. A. Shinohara and T. Ogawa, Homologous recombination and the roles of double-strand breaks, Trends Biochem. Sci., 1995, 20 387–391.

    Article  CAS  PubMed  Google Scholar 

  172. S. C. Kowalczykowski, D. A. Dixon, A. K. Eggleston, S. D. Lauder, W. M. Rehrauer, Biochemistry of homologous recombination in Escherichia coli, Microbiol. Rev., 1994, 58 401–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. E. L. Ivanov, N. Sugawara, C. I. White, F. Fabre, J. E. Haber, Mutations in XRS2 and RAD 50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae, Mol. Cell. Biol., 1994, 14 3414–3425.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. K. Johzuka and H. Ogawa, Interaction of Mre11 and RAD 50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae, Genetics, 1995, 139 1521–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. M. S. Park, Expression of human RAD 52 confers resistance to ionizing radiation in mammalian cells, J. Biol. Chem., 1995, 270 15467–15470.

    Article  CAS  PubMed  Google Scholar 

  176. H. Puchta, P. Swoboda and B. Hohn, Induction of intrachromosomal homologous recombination in whole plants, Plant J., 1995, 7 203–210.

    Article  CAS  Google Scholar 

  177. P.W. Doetsch, What’s old is new: an alternative DNA excision repair pathway, Trends Biochem. Sci., 1995, 20 384–386.

    Article  CAS  PubMed  Google Scholar 

  178. A. Yasui, S. J. McCready, Alternative repair pathways for UV-induced DNA damage, BioEssays, 1998, 20 291–297.

    Article  CAS  PubMed  Google Scholar 

  179. S. J. McCready, A. M. Carr, A. R. Lehmann, Repair of cyclobutane pyrimidine dimers and 6-4 photoproducts in the fission yeast Schizosaccharomyces pombe, Mol. Microbiol., 1993, 10 885–890.

    Article  CAS  PubMed  Google Scholar 

  180. K. Sidik, H. B. Liberman, G. A. Freyer, Repair of DNA damaged by UV light and ionizing radiation by cell-free extracts prepared from Schizosaccharomyces pombe, Proc. Natl. Acad. Sci. U. S. A., 1992, 89 12112–12116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. G. A. Freyer, S. Davey, J. V. Ferrer, A. M. Martin, D. Beach, P. W. Doetsch, An alternative eukaryotic DNA excision repair pathway, Mol. Cell. Biol., 1995, 15 4572–4577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. T. Enoch and C. Norbury, Cellular response to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM, Trends Biochem. Sci., 1995, 20 426–430.

    Article  CAS  PubMed  Google Scholar 

  183. P. A. O’Brien, J. A. Houghton, UV-induced DNA degradation in the cyanobacterium Synechocystis PCC 6308, Photochem. Photobiol., 1982, 36 417–422.

    Article  Google Scholar 

  184. S. E. Freeman, A. D. Blackett, D. C. Monteleone, R. B. Setlow, B. M. Sutherland, J. C. Sutherland, Quantitation of radiation-, chemical-, or enzyme-induced single strand breaks in nonradioactive DNA by alkaline gel electrophoresis: application to pyrimidine dimers, Anal. Biochem., 1986, 158 119–129.

    Article  CAS  PubMed  Google Scholar 

  185. D. L. Mitchell, J. Jen, J. E. Cleaver, Relative induction of cyclobutane dimers and cytosine photohydrates in DNA irradiated in vitro and in vivo with ultraviolet-C and ultraviolet-B light, Photochem. Photobiol., 1991, 54 741–746.

    Article  CAS  PubMed  Google Scholar 

  186. L. Roza, K. J. M. van der Wulp, S. J. MacFarlane, P. H. M. Lohman, R. A. Baan, Detection of cyclobutane thymine dimers in DNA of human cells with monoclonal antibodies raised against a thymine dimer-containing tetranucleotide, Photochem. Photobiol., 1988, 48 627–633.

    Article  CAS  PubMed  Google Scholar 

  187. T. Mori, M. Nakane, T. Hattori, T. Matsunaga, M. Ihara and O. Nikaido, Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyrimidine dimer or (6-4) photoproduct from the same mouse immunized with ultraviolet-irradiated DNA, Photochem. Photobiol., 1991, 54 225–232.

    Article  CAS  PubMed  Google Scholar 

  188. Q Pang, J. B. Hays, UV-B-inducible and temperature sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana, Plant Physiol., 1991, 95 536–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. S. Li and R. Waters, Nucleotide level detection of cyclobutane pyrimidine dimers using oligonucleotides and magnetic beads to facilitate labelling of DNA fragments incised at the dimers and chemical sequencing reference ladders, Carcinogenesis, 1996, 17 1549–1552.

    Article  CAS  PubMed  Google Scholar 

  190. R. Sommaruga, A. G. J. Buma, UV-induced cell-damage is species-specific among aquatic phagotrophic protists, J. Eukaryot. Microbiol., 2000, 47 450–455.

    Article  CAS  PubMed  Google Scholar 

  191. W. H. van de Poll, A. Eggert, A. G. J. Buma, A. M. Breeman, Effects of UV-B induced DNA damage and photoinhibition on growth of temperate marine red macrophytes: habitat related differences in UV-B tolerance, J. Phycol., 2001, 37 30–37.

    Article  Google Scholar 

  192. J. Hidema, H.-S. Kang and T. Kumagai, Changes in cyclobutyl pyrimidine dimer levels in rice (Oryza sativa L.) growing indoors and outdoors with or without supplemental UV-B radiation, J. Photochem. Photobiol., B, 1999, 52 7–13.

    Article  CAS  Google Scholar 

  193. D. Perdiz, P. Gróf, M. Mezzina, O. Nikaido, E. Moustacchi and E. Sage, Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells, J. Biol. Chem., 2000, 275 26732–26742.

    Article  CAS  PubMed  Google Scholar 

  194. T. Douki, M. Court and J. Cadet, Electrospray-mass spectrometry characterization and measurement of far-UV-induced thymine photoproducts, J. Photochem. Photobiol., B, 2000, 54 145–154.

    Article  CAS  Google Scholar 

  195. T. Douki, M. Court, S. Sauvaigo, F. Odin and J. Cadet, Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry, J. Biol. Chem., 2000, 275 11678–11685.

    Article  CAS  PubMed  Google Scholar 

  196. S. Frelon, T. Douki, J. L. Ravanat, J. P. Pouget, C. Tornabene and J. Cadet, High performance liquid chromatography-tandem mass-spectrometry measurement of radiation-induced base damage to isolated and cellular DNA, Chem. Res. Toxicol., 2000, 13 1002–1010.

    Article  CAS  PubMed  Google Scholar 

  197. J. L. Ravanat, G. Remaud and J. Cadet, Measurement of the main photooxidation products of 2’-deoxyguanosine using chromatographic methods coupled to mass-spectrometry, Arch. Biochem. Biophys., 2000, 374 118–127.

    Article  CAS  PubMed  Google Scholar 

  198. S. Sauvaigo, M. J. Richard and J. Cadet, Immunostaining and fish combined with the comet assay−the use of the immunological approach for the detection of DNA-damage, Neoplasma, 1999, 46 97–98.

    Google Scholar 

  199. J. P. Pouget, T. Douki, M. J. Richard and J. Cadet, DNA-damage induced in cells by gamma-radiation, UVA-radiation as measured by HPLC/GC-MS and HPLC-EC and comet assay, Chem. Res. Toxicol., 2000, 13 541–549.

    Article  CAS  PubMed  Google Scholar 

  200. M. P. Sastre, M. Vernet and S. Steinert, Single-cell gel/comet assay applied to the analysis of UV radiation-induced DNA damage in Rhodomonas sp. (Cryptophyta), Photochem. Photobiol., 2001, 74 55–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, R.P., Häder, DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1, 225–236 (2002). https://doi.org/10.1039/b201230h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b201230h

Navigation