Skip to main content
Log in

Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

YtvA is a bacterial flavo-protein related to plant phototropin. The photochemistry of YtvA and of its isolated LOV domain (YtvA-LOV) has been characterized by optical, mass spectrometric and photocalorimetric methods. The energy content (E390) of the FMN-C4a-thiol photoadduct (YtvA390 and YtvA-LOV390) and its structural volume change (ΔV390), with respect to the parent state, have been determined by means of Laser Induced Optoacoustic Spectroscopy (LIOAS). The high value of E390, 136 and 115 kJ mol−1, respectively, ensures a large driving force for the dark recovery to the unphotolyzed state and points to a strained conformation of the protein or/and the chromophore in the photoadduct. The value of ΔV390 is significantly different for the two proteins, ΔV390 = −12.5 ml mol−1 in YtvA and −17.2 ml mol−1 in YtvA-LOV. The kinetics of the dark recovery reaction for YtvA-LOV is slower than for full-length YtvA, with τrec = 3900 and 2600 s at 25 °C, respectively, and shows a different temperature dependence. A similarly slow kinetics can be induced in YtvA by high ionic strength. Minor differences are observed in the fluorescence and photoadduct formation quantum yield. The overall stability is higher for YtvA than for YtvA-LOV. The data as a whole are indicative of an interaction between the two domains of YtvA, most probably mediated by electrostatic interactions that renders the full-length protein a compact and more rigid unit. The results reported here support the idea that the formation of the photoadduct changes the dynamics of the protein, depending on the conformational flexibility of the parent state. Flashing of the photoadduct induces a negligible ΔV, with 96% of the excitation energy dissipated as heat in <20 ns, indicating that the photoadduct does not undergo a photocycle on the LIOAS time scale, or that the photoinduced reactions occur with very low yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Losi, E. Polverini, B. Quest, W. Gärtner, First evidence for phototropin-related blue-light receptors in prokaryotes, Biophys. J., 2002, 82, 2627–2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Crosson, S. Rajagopal, K. Moffat, The LOV domain family: Photoresponsive signaling modules coupled to diverse output domains, Biochemistry, 2003, 42, 2–10.

    Article  CAS  PubMed  Google Scholar 

  3. J. M. Christie, P. Reymond, G. K. Powell, P. Bernasconi, A. A. Raibekas, E. Liscum, W. R. Briggs, Arabidopsis NPH1: A Flavoprotein with the Properties of a Photoreceptor for Phototropism, Science, 1998, 282, 1698–1701.

    Article  CAS  PubMed  Google Scholar 

  4. W. R. Briggs, J. M. Christie, Phototropins 1 and 2: versatile plant blue-light receptors, Trends Plant Sci., 2002, 7, 204–210.

    Article  CAS  PubMed  Google Scholar 

  5. B. L. Taylor, I. B. Zhulin, PAS domains: internal sensors of oxygen, redox potential and light, Microbiol. Mol. Biol. Rev., 1999, 63, 479–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. K. Hanks, T. Hunter, Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification, FASEB J., 1995, 9, 576–596.

    Article  CAS  PubMed  Google Scholar 

  7. J. M. Christie, M. Salomon, K. Nozue, M. Wada, W. R. Briggs, LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide, Proc. Natl. Acad. Sci. USA, 1999, 96, 8779–8783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. W. Holzer, A. Penzkofer, M. Fuhrmann, P. Hegemann, Spectroscopic characterization of flavin mononucleotide bound to the LOV1 domain of Phot1 from Chlamydomonas reinhardtii, Photochem. Photobiol., 2002, 75, 479–487.

    Article  CAS  PubMed  Google Scholar 

  9. Q. He, P. Cheng, Y. Yang, L. Wang, K. H. Gardner, Y. Liu, White collar-1, a DNA binding transcription factor and a light sensor, Science, 2002, 297, 840–843.

    Article  CAS  PubMed  Google Scholar 

  10. P. Cheng, Q. He, Y. Yang, L. Wang, Y. Liu, Functional conservation of light, oxygen, or voltage domains in light sensing, Proc. Natl. Acad. Sci. USA, 2003, 1031791100.

    Google Scholar 

  11. M. Salomon, W. Eisenreich, H. Dürr, E. Scleicher, E. Knieb, V. Massey, W. Rüdiger, F. Müller, A. Bacher, G. Richter, An optomechanical transducer in the blue light receptor phototropin from Avena sativa, Proc. Natl. Acad. Sci. USA, 2001, 98, 12357–12361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Salomon, J. M. Christie, E. Knieb, U. Lempert, W. R. Briggs, Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor phototropin, Biochemistry, 2000, 39, 9401–9410.

    Article  CAS  PubMed  Google Scholar 

  13. M. Kasahara, T. E. Swartz, M. A. Olney, A. Onodera, N. Mochizuki, H. Fukuzawa, E. Asamizu, S. Tabata, H. Kanegae, M. Takano, J. M. Christie, A. Nagatani, W. R. Briggs, Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii, Plant Physiol., 2002, 129, 762–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. T. E. Swartz, S. B. Corchnoy, J. M. Christie, J. W. Lewis, I. Szundi, W. R. Briggs, R. A. Bogomolni, The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin, J. Biol. Chem., 2001, 276, 36493–36500.

    Article  CAS  PubMed  Google Scholar 

  15. T. Kottke, J. Heberle, B. Dick, P. Hegemann, Photocycle of the Phot-LOV1 domain from Chlamydomonas reinhardtii, Biophys. J., 2003, 84, 1192–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Akbar, T. A. Gaidenko, K. Min, M. O’Reilly, K. M. Devine, C. W. Price, New family of regulators in the environmental signaling pathway which activates the general stress transcription factor of Bacillus subtilis, J. Bacteriol., 2001, 183, 1329–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. Neicu, A. Pradhan, D. A. Larochelle, A. Kudrolli, Extinction transition in bacterial colonies under forced convection, Phys. Rev., 2000, 62, 1059.

    CAS  Google Scholar 

  18. A. M. Delprato, A. Samadani, A. Kudrolli, L. S. Tsimring, Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation, Phys. Rev. Lett., 2001, 87, 158102.

    Article  CAS  PubMed  Google Scholar 

  19. L. Aravind, E. V. Koonin, The STAS domain a link between anion transporters and antisigma-factor antagonists, Curr. Biol., 2000, 10, R53–R55.

    Article  CAS  PubMed  Google Scholar 

  20. S. B. Corchnoy, T. E. Swartz, J. W. Lewis, I. Szundi, W. R. Briggs, R. A. Bogomolni, Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1, J. Biol. Chem., 2003, 278, 724–731.

    Article  CAS  PubMed  Google Scholar 

  21. S. Crosson, K. Moffat, Photoexcited Structure of a Plant Photoreceptor Domain Reveals a Light-Driven Molecular Switch, Plant Cell, 2002, 14, 1067–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. R. Fedorov, I. Schlichting, E. Hartmann, T. Domratcheva, M. Fuhrmann, P. Hegemann, Crystal structures and molecular mechanism of a light-induced signaling switch: the Phot-LOV1 domain from Chlamydomonas reinhardtii, Biophys. J., 2003, 84, 2492–2501.

    Article  Google Scholar 

  23. T. E. Swartz, P. J. Wenzel, S. B. Corchnoy, W. R. Briggs, R. A. Bogomolni, Vibration Spectroscopy Reveals Light-Induced Chromophore and Protein Structural Changes in the LOV2 Domain of the Plant Blue-Light Receptor Phototropin 1, Biochemistry, 2002, 41, 7183–7189.

    Article  CAS  PubMed  Google Scholar 

  24. K. Ataka, P. Hegemann, J. Heberle, Vibrational Spectroscopy of an Algal Phot-LOV1 Domain Probes the Molecular Changes Associated with Blue-light Reception, Biophys. J., 2003, 41, 466–474.

    Article  Google Scholar 

  25. S. E. Braslavsky, G. E. Heibel, Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution, Chem. Rev., 1992, 92, 1381–1410.

    Article  CAS  Google Scholar 

  26. C. D. Borsarelli, S. E. Braslavsky, Volume changes correlate with enthalpy changes during the photoinduced formation of the (MLCT)-M-3 state of ruthenium(II) bipyridine cyano complexes in the presence of salts. A case of the entropy-enthalpy compensation effect, J. Phys. Chem. B, 1998, 102, 6231–6238.

    Article  CAS  Google Scholar 

  27. A. Losi, A. A. Wegener, M. Engelhardt, S. E. Braslavsky, Enthalpy-entropy compensation in a photocycle: The K to L transition in sensory rhodopsin II from Natronobacterium pharaonis, J. Am. Chem. Soc., 2001, 123, 1766–1767.

    Article  CAS  PubMed  Google Scholar 

  28. P. W. van den Berg, J. Widengren, M. A. Hink, R. Rigler, A. G. Visser, Fluorescence correlation spectroscopy of flavins and flavoenzymes: photochemical and photophysical aspects, Spectrochim. Acta, Part A, 2001, 57, 2135–2144.

    Article  Google Scholar 

  29. A. Losi, A. A. Wegener, M. Engelhard, W. Gärtner, S. E. Braslavsky, Aspartate 75 mutation in sensory rhodopsin II from Natronobacterium pharaonis does not influence the production of the K-like intermediate, but strongly affects its relaxation pathway, Biophys. J., 2000, 78, 2581–2589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. E. Rudzki-Small, J. L. Goodman, K. S. Peters, Simultaneous determination of photoreaction dynamics and energetics using pulsed,time-resolved photoacoustic calorimetry, J. Am. Chem. Soc., 1985, 107, 7849–7854.

    Article  Google Scholar 

  31. S. Abbruzzetti, C. Viappiani, D. H. Murgida, R. Erra-Balsells, G. M. Bilmes, Non-toxic, water-soluble photocalorimetric reference compounds for UV and visible excitation, Chem. Phys. Lett., 1999, 304, 167–172.

    Article  CAS  Google Scholar 

  32. J. Rudzki-Small, L. J. Libertini, E. W. Small, Analysis of photoacoustic waveforms using the nonlinear least square method, Biophys. Chem., 1992, 41, 29–48.

    Article  Google Scholar 

  33. S. Malkin, M. S. Churio, S. Shochat, S. E. Braslavsky, Photochemical energy storage and volume changes in the microsecond time range in bacterial photosynthesis–a laser induced optoacoustic study, J. Photochem. Photobiol. B: Biol., 1994, 23, 79–85.

    Article  Google Scholar 

  34. A. J. W. G. Visser, F. Müller, Time-resolved fluorescence on flavins and flavoproteins, Methods Enzymol., 1980, 66, 373–385.

    Article  CAS  PubMed  Google Scholar 

  35. P. S. Song, W. E. Kurtin, On triplet states of flavins, J. Am. Chem. Soc., 1967, 89, 4248–4249.

    Article  CAS  PubMed  Google Scholar 

  36. S. Crosson, K. Moffat, Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction, Proc. Natl. Acad. Sci. USA, 2001, 98, 2995–3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. P. S. Song, T. A. Moore, Mechanism of the photodephosphorylation of menadiol diphosphate. A model for bioquantum conversion, J. Am. Chem. Soc., 1968, 90, 6507–6514.

    Article  CAS  Google Scholar 

  38. R. W. Chambers, D. R. Kearns, Triplet states of some common photosensitizing dyes, Photochem. Photobiol., 1969, 10, 215–219.

    Article  CAS  PubMed  Google Scholar 

  39. C. Neiss, P. Saalfrank, Ab Initio Quantum Chemical Investigation of the First Steps of the Photocycle of Phototropin: A Model Study, Photochem. Photobiol., 2003, 77, 101–109.

    Article  CAS  PubMed  Google Scholar 

  40. R. Kort, H. Vonk, X. Xu, W. D. Hoff, W. Crielaard, K. J. Hellingwerf, Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein, FEBS Lett., 1996, 382, 73–78.

    Article  CAS  PubMed  Google Scholar 

  41. K. Takeshita, Y. Imamoto, M. Kataoka, F. Tokunaga, M. Terazima, Thermodynamic and transport properties of intermediate states of the photocyclic reaction of photoactive yellow protein, Biochemistry, 2002, 41, 3037–3048.

    Article  CAS  PubMed  Google Scholar 

  42. A. Xie, L. Kelemen, J. Hendriks, B. J. White, K. J. Hellingwerf, W. D. Hoff, Formation of a new buried charge drives a large-amplitude protein quake in photoreceptor activation, Biochemistry, 2001, 40, 1510–1517.

    Article  CAS  PubMed  Google Scholar 

  43. A. Cooper, Rhodopsin photoenergetics: lumirhodopsin and the complete energy profile, FEBS Lett., 1981, 123, 324–326.

    Article  CAS  PubMed  Google Scholar 

  44. Y. Nishioku, M. Nakagawa, M. Tsuda, M. Terazima, Energetics and Volume Changes of the Intermediates in the Photolysis of Octopus Rhodopsin at a Physiological Temperature, Biophys. J., 2002, 83, 1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aba Losi.

Additional information

Dedicated to Professor Silvia Braslavsky, to mark her great contribution to photochemistry and photobiology particularly in the field of photothermal methods.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Losi, A., Quest, B. & Gärtner, W. Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain. Photochem Photobiol Sci 2, 759–766 (2003). https://doi.org/10.1039/b301782f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b301782f

Navigation