Skip to main content
Log in

Fundus autofluorescence and the bisretinoids of retina

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Imaging of the human fundus of the eye with excitation wavelengths in the visible spectrum reveals a natural autofluorescence, that in a healthy retina originates primarily from the bisretinoids that constitute the lipofuscin of retinal pigment epithelial (RPE) cells. Since the intensity and distribution of fundus autofluorescence is altered in the presence of retinal disease, we have examined the fluorescence properties of the retinal bisretinoids with a view to aiding clinical interpretations. As is also observed for fundus autofluorescence, fluorescence emission from RPE lipofuscin was generated with a wide range of exciting wavelengths; with increasing excitation wavelength, the emission maximum shifted towards longer wavelengths and spectral width was decreased. These features are consistent with fluorescence generation from a mixture of compounds. While the bisretinoids that constitute RPE lipofuscin all fluoresced with maxima that were centered around 600 nm, fluorescence intensities varied when excited at 488 nm, the excitation wavelength utilized for fundus autofuorescence imaging. For instance the fluorescence efficiency of the bisretinoid A2-dihydropyridine-phosphatidylethanolamine (A2-DHP-PE) was greater than A2E and relative to both of the latter, all-trans-retinal dimer-phosphatidylethanolamine was weakly fluorescent. On the other hand, certain photooxidized forms of the bisretinoids present in both RPE and photoreceptor cells were more strongly fluorescent than the parent compound. We also sought to evaluate whether diffuse puncta of autofluorescence observed in some retinal disorders of monogenic origin are attributable to retinoid accumulation. However, two retinoids of the visual cycle, all-trans-retinyl ester and all-trans-retinal, did not exhibit fluorescence at 488 nm excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. von Ruckmann, F. W. Fitzke, A. C. Bird, Distribution of fundus autofluorescence with a scanning laser ophthalmoscope, Br. J. Ophthalmol., 1995, 79, 407–412.

    Article  Google Scholar 

  2. R. F. Spaide, in Atlas of Fundus Autofluorescence Imaging, ed. F. G. Holz, S. Schmitz-Valckenberg, R. F. Spaide and A. C. Bird, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 49–54.

  3. F. C. Delori, Spectrophotometer for noninvasive measurement of intrinsic fluorescence and reflectance of the ocular fundus, Appl. Opt., 1994, 33, 7439–7452.

    Article  CAS  PubMed  Google Scholar 

  4. J. I. Morgan, J. J. Hunter, B. Masella, R. Wolfe, D. C. Gray, W. H. Merigan, F. C. Delori, D. R. Williams, Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium, Invest. Ophthalmol. Visual Sci., 2008, 49, 3715–3729.

    Article  Google Scholar 

  5. F. C. Delori, C. K. Dorey, G. Staurenghi, O. Arend, D. G. Goger, J. J. Weiter, In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics, Invest. Ophthalmol. Visual Sci., 1995, 36, 718–729.

    CAS  Google Scholar 

  6. A. von Ruckmann, F. W. Fitzke, A. C. Bird, In vivo fundus autofluorescence in macular dystrophies, Arch. Ophthalmol., 1997, 115, 609–615.

    Article  Google Scholar 

  7. F. C. Delori, D. G. Goger, C. K. Dorey, Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects, Invest. Ophthalmol. Visual Sci., 2001, 42, 1855–1866.

    CAS  Google Scholar 

  8. C. A. Parish, M. Hashimoto, K. Nakanishi, J. Dillon, J. R. Sparrow, Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 14609–14613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. N. Fishkin, J. R. Sparrow, R. Allikmets, K. Nakanishi, Isolation and characterization of a retinal pigment epithelial cell fluorophore: an all-trans-retinal dimer conjugate, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 7091–7096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. R. Kim, Y. P. Jang, S. Jockusch, N. E. Fishkin, N. J. Turro, J. R. Sparrow, The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 19273–19278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. Wu, N. E. Fishkin, A. Pande, J. Pande, J. R. Sparrow, Novel lipofuscin bisretinoids prominent in human retina and in a model of recessive Stargardt disease, J. Biol. Chem., 2009, 284, 20155–20166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. B. Lorenz, B. Wabbels, E. Wegscheider, C. P. Hamel, W. Drexler, M. N. Presing, Lack of fundus autofluorescence to 488 nanometers from childhood on in patients with early-onset severe retinal dystrophy associated with mutations in RPE65, Ophthalmology, 2004, 111, 1585–1594.

    Article  PubMed  Google Scholar 

  13. R. C. Eagle, A. C. Lucier, V. B. Bernardino, M. Yanoff, Retinal pigment epithelial abnormalities in fundus flavimaculatus, Ophthalmology, 1980, 87, 1189–1200.

    Article  PubMed  Google Scholar 

  14. J. Weng, N. L. Mata, S. M. Azarian, R. T. Tzekov, D. G. Birch, G. H. Travis, Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice, Cell, 1999, 98, 13–23.

    Article  CAS  PubMed  Google Scholar 

  15. S. R. Kim, N. Fishkin, J. Kong, K. Nakanishi, R. Allikmets, J. R. Sparrow, The Rpe65 Leu 450 Met variant is associated with reduced levels of the RPE lipofuscin fluorophores A2E and iso-A2E, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 11668–11672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. F. C. Delori, G. Staurenghi, O. Arend, C. K. Dorey, D. G. Goger, J. J. Weiter, In vivo measurement of lipofuscin in Stargardt’s disease–Fundus flavimaculatus, Invest. Ophthalmol. Visual Sci., 1995, 36, 2327–2331.

    CAS  Google Scholar 

  17. N. Lois, G. E. Holder, C. V. Bunce, F. W. Fitzke, A. C. Bird, Phenotypic subtypes of Stargardt macular dystrophy-fundus flavimaculatus, Arch. Ophthalmol., 2001, 119, 359–369.

    Article  CAS  PubMed  Google Scholar 

  18. V. Vasireddy, M. M. Jablonski, N. W. Khan, X. F. Wang, P. Sahu, J. R. Sparrow, R. Ayyagari, Elovl4 5-bp deletion knock-in mouse model for Stargardt-like macular degeneration demonstrates accumulation of ELOVL4 and lipofusin, Exp. Eye Res., 2009, 89, 905–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. J. E. Chung, R. F. Spaide, Fundus autofluorescence and vitelliform macular dystrophy, Arch. Ophthalmol., 2004, 122, 1078.

    Article  PubMed  Google Scholar 

  20. G. L. Wing, G. C. Blanchard, J. J. Weiter, The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium, Invest. Ophthalmol. Visual Sci., 1978, 17, 601–607.

    CAS  Google Scholar 

  21. R. W. Young, Pathophysiology of age-related macular degeneration, Surv. Ophthalmol., 1987, 31, 291–306.

    Article  CAS  PubMed  Google Scholar 

  22. J. Zhou, Y. P. Jang, S. R. Kim, J. R. Sparrow, Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 16182–16187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. Zhou, S. R. Kim, B. S. Westlund, J. R. Sparrow, Complement activation by bisretinoid constituents of RPE lipofuscin, Invest. Ophthalmol. Visual Sci., 2009, 50, 1392–1399.

    Article  Google Scholar 

  24. F. G. Holz, C. Bellman, S. Staudt, F. Schutt, H. E. Volcker, Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration, Invest. Ophthalmol. Visual Sci., 2001, 42, 1051–1056.

    CAS  Google Scholar 

  25. A. G. Robson, M. Michaelides, Z. Saihan, A. C. Bird, A. R. Webster, A. T. Moore, F. W. Fitzke, G. E. Holder, Functional characteristics of patients with retinal dystrophy that manifest abnormal parafoveal annuli of high density fundus autofluorescence: a review and update, Doc. Ophthalmol., 2008, 116, 79–89.

    Article  PubMed  Google Scholar 

  26. S. Schmitz-Valckenberg, J. Jorzik, K. Unnebrink, F. G. Holz, Analysis of digital scanning laser ophthalmoscopy fundus autofluorescenceimages of geographic atrophy in advanced age-related macular degeneration, Graefe’s Arch. Clin. Exp. Ophthalmol., 2002, 240, 73–78.

    Article  Google Scholar 

  27. J. Liu, Y. Itagaki, S. Ben-Shabat, K. Nakanishi, J. R. Sparrow, The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane, J. Biol. Chem., 2000, 275, 29354–29360.

    Article  CAS  PubMed  Google Scholar 

  28. N. Sakai, J. Decatur, K. Nakanishi, G. E. Eldred, Ocular age pigment “A2E”: An unprecedented pyridinium bisretinoid, J. Am. Chem. Soc., 1996, 118, 1559–1560.

    Article  CAS  Google Scholar 

  29. N. Fishkin, G. Pescitelli, J. R. Sparrow, K. Nakanishi, N. Berova, Absolute configurational determination of an all-trans-retinal dimer isolated from photoreceptor outer segments, Chirality, 2004, 16, 637–641.

    Article  CAS  PubMed  Google Scholar 

  30. F. C. Delori, C. Keilhauer, J. R. Sparrow and G. Staurenghi, in Atlas of Fundus Autofluorescence Imaging, ed. F. G. Holz, S. Schmitz-Valckenberg, R. F. Spaide and A. C. Bird, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 17–29.

  31. J. R. Sparrow, C. A. Parish, M. Hashimoto, K. Nakanishi, A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture, Invest. Ophthalmol. Visual Sci., 1999, 40, 2988–2995.

    CAS  Google Scholar 

  32. S. R. Kim, Y. Jang, J. R. Sparrow, Photooxidation of RPE Lipofuscin bisretinoids enhanced fluorescence intensity, Vision Res., 2010, 50, 729–736.

    Article  CAS  PubMed  Google Scholar 

  33. J. R. Sparrow, K. Yoon, Y. Wu, K. Yamamoto, Interpretations of fundus autofluorescence from studies of the bisretinoids of retina, Invest. Ophthalmol. Visual Sci., 2010, 51, 4351–4357.

    Article  Google Scholar 

  34. Y. P. Jang, H. Matsuda, Y. Itagaki, K. Nakanishi, J. R. Sparrow, Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cells lipofuscin, J. Biol. Chem., 2005, 280, 39732–39739.

    Article  CAS  PubMed  Google Scholar 

  35. D. Bok, Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture, Invest. Ophthalmol. Visual Sci., 1985, 26, 1659–1694.

    CAS  Google Scholar 

  36. S. Ben-Shabat, C. A. Parish, H. R. Vollmer, Y. Itagaki, N. Fishkin, K. Nakanishi, J. R. Sparrow, Biosynthetic studies of A2E, a major fluorophore of RPE lipofuscin, J. Biol. Chem., 2002, 277, 7183–7190.

    Article  CAS  PubMed  Google Scholar 

  37. S. R. Kim, J. He, E. Yanase, Y. P. Jang, N. Berova, J. R. Sparrow, K. Nakanishi, Characterization of dihydro-A2PE: an Intermediate in the A2E biosynthetic pathway, Biochemistry, 2007, 46, 10122–10129.

    Article  CAS  PubMed  Google Scholar 

  38. J. R. Sparrow, S. R. Kim, A. M. Cuervo, U. Bandhyopadhyayand, A2E, a pigment of RPE lipofuscin is generated from the precursor A2PE by a lysosomal enzyme activity, Adv. Exp. Med. Biol., 2008, 613, 393–398.

    Article  CAS  PubMed  Google Scholar 

  39. S. Ben-Shabat, Y. Itagaki, S. Jockusch, J. R. Sparrow, N. J. Turro, K. Nakanishi, Formation of a nona-oxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement, Angew. Chem., Int. Ed., 2002, 41, 814–817.

    Article  CAS  Google Scholar 

  40. S. R. Kim, S. Jockusch, Y. Itagaki, N. J. Turro, J. R. Sparrow, Mechanisms involved in A2E oxidation, Exp. Eye Res., 2008, 86, 975–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. R. Sparrow, J. Zhou, S. Ben-Shabat, H. Vollmer, Y. Itagaki, K. Nakanishi, Involvement of oxidative mechanisms in blue light induced damage to A2E-laden RPE, Invest. Ophthalmol. Visual Sci., 2002, 43, 1222–1227.

    Google Scholar 

  42. M. A. Genead, G. A. Fishman, M. Lindeman, Spectral-domain optical coherence tomography and fundus autofluorescence characteristics in patients with fundus albipunctatus and retinitis punctata albescens, Ophthalmic Genet., 2010, 31, 66–72.

    Article  PubMed  Google Scholar 

  43. H. Yamamoto, K. Yakushijin, S. Kusuhara, M. F. Escano, A. Nagai, A. Negi, A novel RDH5 gene mutation in a patient with fundus albipunctatus presenting with macular atrophy and fading white dots, Am. J. Ophthalmol., 2003, 136, 572–574.

    Article  CAS  PubMed  Google Scholar 

  44. G. Humbert, C. Delettre, A. Sénéchal, C. Bazalgette, A. Barakat, C. Bazalgette, B. Arnaud, G. Lenaers, C. P. Hamel, Homozygous deletion related to Alu repeats in RLBP1 causes retinitis punctata albescens, Invest. Ophthalmol. Visual Sci., 2006, 47, 4719–4724.

    Article  Google Scholar 

  45. T. M. Redmond, S. Yu, E. Lee, D. Bok, D. Hamasaki, N. Chen, P. Goletz, J.-X. Ma, R. K. Crouch, K. Pfeifer, Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle, Nat. Genet., 1998, 20, 344–351.

    Article  CAS  PubMed  Google Scholar 

  46. S. Alex, H. L. Thanh, D. Vocelle, Studies of the effect of hydrogen bonding on the absorption and fluorescence spectra of all-trans-retinal at room temperature, Can. J. Chem., 1992, 70, 880–887.

    Article  CAS  Google Scholar 

  47. T. Takemura, G. Hug, P. K. Das, R. S. Becker, Visual pigments. 9. Fluorescence of dimers of retinals, J. Am. Chem. Soc., 1978, 100, 2631–2634.

    Article  CAS  Google Scholar 

  48. A. Maeda, T. Maeda, M. Golczak, S. Chou, A. Desai, C. L. Hoppel, S. Matsuyama, K. Palczewski, Involvement of all-trans-retinal in acute light-induced retinopathy of mice, J. Biol. Chem., 2009, 284, 15173–15183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. S. A. Schadel, M. Heck, D. Maretzki, S. Filipek, D. C. Teller, K. Palczewski, K. P. Hofmann, Ligand channeling with a G-protein-coupled receptor: The entry and exit of retinal in native opsin, J. Biol. Chem., 2003, 278, 24896–24903.

    Article  PubMed  CAS  Google Scholar 

  50. R. E. Anderson, M. B. Maude, Phospholipids of bovine outer segments, Biochemistry, 1970, 9, 3624–3628.

    Article  CAS  PubMed  Google Scholar 

  51. J. R. Sparrow, Y. Wu, C. Y. Kim, J. Zhou, Phospholipid meets all-trans-retinal: the making of RPE bisretinoids, J. Lipid Res., 2010, 51, 247–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet R. Sparrow.

Additional information

This article is published as part of a themed issue on photosensitive visual pigments: opsins and retinoids.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparrow, J.R., Wu, Y., Nagasaki, T. et al. Fundus autofluorescence and the bisretinoids of retina. Photochem Photobiol Sci 9, 1480–1489 (2010). https://doi.org/10.1039/c0pp00207k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00207k

Navigation