Skip to main content
Log in

The specificity of UVA-induced DNA damage in human melanocytes

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Exposure to solar UV radiation is the origin of most skin cancers, including deadly melanomas. Melanomas are quite different from keratinocyte-derived tumours and exhibit a different mutation spectrum in the activated oncogenes, possibly arising from a different class of DNA damage. In addition, some data suggest a role for UVA radiation in melanomagenesis. To get further insight into the molecular mechanisms underlying induction of melanoma, we quantified a series of UV-induced DNA damage in primary cultures of normal human melanocytes. The results were compared with those obtained in keratinocytes from the same donors. In the UVB range, the frequency and the distribution of pyrimidine dimers was the same in melanocytes and keratinocytes. UVA was also found to produce thymine cyclobutane dimer as the major DNA lesion with an equal efficiency in both cell types. In contrast, following UVA-irradiation a large difference was found for the yield of 8-oxo-7,8-dihydroguanine; the level of this product was 2.2-fold higher in melanocytes than in keratinocytes. The comet assay showed that the induction of strand breaks was equally efficient in both cell types but that the yield of Fpg-sensitive sites was larger in melanocytes. Our data show that, upon UVA irradiation, oxidative lesions contribute to a larger extent to DNA damage in melanocytes than in keratinocytes. We also observed that the basal level of oxidative lesions was higher in the melanocytes, in agreement with a higher oxidative stress that may be due to the production of melanin. The bulk of these results, combined with qPCR and cell survival data, may explain some of the differences in mutation spectrum and target genes between melanomas and carcinomas arising from keratinocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Walker, Cutaneous melanoma: how does ultraviolet light contribute to melanocyte transformation?, Future Oncol., 2008, 4, 841–856.

    PubMed  Google Scholar 

  2. N. Maddodi, V. Setaluri, Role of UV in cutaneous melanoma, Photochem. Photobiol., 2008, 84, 528–536.

    CAS  PubMed  Google Scholar 

  3. D. C. Whiteman, C. A. Whiteman, A. C. Green, Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies, Cancer, Causes Control, 2001, 12, 69–82.

    CAS  PubMed  Google Scholar 

  4. S. Jiveskog, B. Ragnarsson-Olding, A. Platz, U. Ringborg, N-ras mutations are common in melanomas from sun-exposed skin of humans but rare in mucosal membrane or unexposed skin, J. Invest. Dermatol., 1998, 111, 757–761.

    CAS  PubMed  Google Scholar 

  5. S. Pavey, P. Johansson, L. Packer, J. Taylor, M. Stark, P. M. Pollock, G. J. Walker, G. M. Boyle, U. Harper, S. J. Cozzi, K. Hansen, L. Yudt, C. Schmidt, P. Hersey, K. A. Ellem, M. G. O’Rourke, P. G. Parsons, P. Meltzer, M. Ringner, N. K. Hayward, Microarray expression profiling in melanoma reveals a BRAF mutation signature, Oncogene, 2004, 23, 4060–4067.

    CAS  PubMed  Google Scholar 

  6. P. M. Pollock, U. L. Harper, K. S. Hansen, L. M. Yudt, M. Stark, C. M. Robbins, T. Y. Moses, G. Hostetter, U. Wagner, J. Kakareka, G. Salem, T. Pohida, P. Heenan, P. Duray, O. Kallioniemi, N. K. Hayward, J. M. Trent, P. S. Meltzer, High frequency of BRAF mutations in nevi, Nat. Genet., 2003, 33, 19–20.

    CAS  PubMed  Google Scholar 

  7. J. A. Curtin, J. Fridlyand, T. Kageshita, H. N. Patel, K. J. Busam, H. Kutzner, K. H. Cho, S. Aiba, E. B. Brocker, P. E. LeBoit, D. Pinkel, B. C. Bastian, Distinct sets of genetic alterations in melanoma, N. Engl. J. Med., 2005, 353, 2135–2147.

    CAS  PubMed  Google Scholar 

  8. R. B. Setlow, Spectral regions contributing to melanoma: a personal view, J. Invest. Dermatol. Symp. Proc., 1999, 4, 46–49.

    CAS  Google Scholar 

  9. D. L. Mitchell, A. A. Fernandez, R. S. Nairn, R. Garcia, L. Paniker, D. Trono, H. D. Thames, I. Gimenez-Conti, Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 9329–9334.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. E. C. De Fabo, F. P. Noonan, T. Fears, G. Merlino, Ultraviolet B but not ultraviolet A radiation initiates melanoma, Cancer Res., 2004, 64, 6372–6376.

    PubMed  Google Scholar 

  11. S. G. Coelho, V. J. Hearing, UVA tanning is involved in the increased incidence of skin cancers in fair-skinned young women, Pigm. Cell Melanoma Res., 2010, 23, 57–63.

    Google Scholar 

  12. D. E. Brash, J. A. Rudolph, J. A. Simon, A. Lin, G. J. McKenna, H. P. Baden, A. J. Halperin, J. Ponten, A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 10124–10128.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Ziegler, D. J. Leffel, S. Kunala, H. W. Sharma, P. E. Shapiro, A. E. Bale, D. E. Brash, Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 4216–4220.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Jans, W. Schul, Y. G. Sert, Y. Rijksen, H. Rebel, A. P. Eker, S. Nakajima, H. van Steeg, F. R. de Gruijl, A. Yasui, J. H. Hoeijmakers, G. T. van der Horst, Powerful skin cancer protection by a CPD-photolyase transgene, Curr. Biol., 2005, 15, 105–115.

    CAS  PubMed  Google Scholar 

  15. Y. H. You, D. H. Lee, J. H. Yoon, S. Nakajima, A. Yasui, G. P. Pfeifer, Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells, J. Biol. Chem., 2001, 276, 44688–44694.

    CAS  PubMed  Google Scholar 

  16. E. D. Pleasance, R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray, C. D. Greenman, I. Varela, M. L. Lin, G. R. Ordonez, G. R. Bignell, K. Ye, J. Alipaz, M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. N. Chen, A. J. Cox, S. Edkins, P. I. Kokko-Gonzales, N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M. Hims, T. James, M. M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J. Mudie, Z. M. Ning, T. Royce, O. B. Schulz-Trieglaff, A. Spiridou, L. A. Stebbings, L. Szajkowski, J. Teague, D. Williamson, L. Chin, M. T. Ross, P. J. Campbell, D. R. Bentley, P. A. Futreal, M. R. Stratton, A comprehensive catalogue of somatic mutations from a human cancer genome, Nature, 2010, 463, 191–197.

    CAS  PubMed  Google Scholar 

  17. T. Hocker, H. S. Tsao, Ultraviolet radiation and melanoma: A systematic review and analysis of reported sequence variants, Hum. Mutat., 2007, 28, 578–588.

    CAS  PubMed  Google Scholar 

  18. Y. Wang, J. J. DiGiovanna, J. B. Stern, T. J. Hornyak, M. Raffeld, S. G. Khan, K. S. Oh, M. C. Hollander, P. A. Dennis, K. H. Kraemer, Evidence of ultraviolet type mutations in xeroderma pigmentosum melanomas, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 6279–6284.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. H. Davies, G. R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, J. Teague, H. Woffendin, M. J. Garnett, W. Bottomley, N. Davis, N. Dicks, R. Ewing, Y. Floyd, K. Gray, S. Hall, R. Hawes, J. Hughes, V. Kosmidou, A. Menzies, C. Mould, A. Parker, C. Stevens, S. Watt, S. Hooper, R. Wilson, H. Jayatilake, B. A. Gusterson, C. Cooper, J. Shipley, D. Hargrave, K. Pritchard-Jones, N. Maitland, G. Chenevix-Trench, G. J. Riggins, D. D. Bigner, G. Palmieri, A. Cossu, A. Flanagan, A. Nicholson, J. W. C. Ho, S. Y. Leung, S. T. Yuen, B. L. Weber, H. F. Siegler, T. L. Darrow, H. Paterson, R. Marais, C. J. Marshall, R. Wooster, M. R. Stratton, P. A. Futreal, Mutations of the BRAF gene in human cancer, Nature, 2002, 417, 949–954.

    CAS  PubMed  Google Scholar 

  20. J. Cadet, T. Douki, J. L. Ravanat, P. Di Mascio, Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation, Photochem. Photobiol. Sci., 2009, 8, 903–911.

    CAS  PubMed  Google Scholar 

  21. S. Courdavault, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Larger yield of cyclobutane dimers than 8 oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells, Mutat. Res., Fundam. Mol. Mech. Mutagen., 2004, 556, 135–142.

    CAS  Google Scholar 

  22. T. Douki, A. Reynaud-Angelin, J. Cadet, E. Sage, Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation, Biochemistry, 2003, 42, 9221–9226.

    CAS  PubMed  Google Scholar 

  23. C. Kielbassa, L. Roza, B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light, Carcinogenesis, 1997, 18, 811–816.

    CAS  PubMed  Google Scholar 

  24. S. Mouret, C. Baudouin, M. Charveron, A. Favier, J. Cadet, T. Douki, Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13765–13770.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. D. Perdiz, P. Grof, M. Mezzina, O. Nikaido, E. Moustacchi, E. Sage, Distribution and repair of bipyrimidine photoproducts in solar UV-irradiated mammalian cells. Possible role of Dewar photoproducts in solar mutagenesis, J. Biol. Chem., 2000, 275, 26732–26742.

    CAS  PubMed  Google Scholar 

  26. S. Frelon, T. Douki, J.-L. Ravanat, C. Tornabene, J. Cadet, High performance liquid chromatography-tandem mass spectrometry measurement of radiation-induced base damage to isolated and cellular DNA, Chem. Res. Toxicol., 2000, 13, 1002–1010.

    CAS  PubMed  Google Scholar 

  27. T. Douki, J. Cadet, Individual determination of the yield of the main-UV induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions, Biochemistry, 2001, 40, 2495–2501.

    CAS  PubMed  Google Scholar 

  28. T. Douki, M. Court, S. Sauvaigo, F. Odin, J. Cadet, Formation of the main UV-induced thymine dimeric lesions within isolated and cellular DNA as measured by high performance liquid chromatography-tandem mass spectrometry, J. Biol. Chem., 2000, 275, 11678–11685.

    CAS  PubMed  Google Scholar 

  29. S. Mouret, S. Sauvaigo, A. Peinnequin, A. Favier, J. C. Beani, M. T. Leccia, E6*oncoprotein expression of human papillomavirus type-16 determines different ultraviolet sensitivity related to glutathione and glutathione peroxidase antioxidant defence, Exp. Dermatol., 2005, 14, 401–410.

    CAS  PubMed  Google Scholar 

  30. M. W. Pfaffl, G. W. Horgan, L. Dempfle, Relative expression software tool (REST (c)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucleic Acids Res., 2002, 30, e36.

    PubMed  PubMed Central  Google Scholar 

  31. S. M. Deleeuw, S. Janssen, J. Simons, P. H. M. Lohman, B. J. Vermeer, A. A. Schothorst, The UV action spectra for the clone-forming ability of cultured human melanocytes and keratinocytes, Photochem. Photobiol., 1994, 59, 430–436.

    CAS  Google Scholar 

  32. P. Larsson, E. Andersson, U. Johansson, K. Ollinger, I. Rosdahl, Ultraviolet A and B affect human melanocytes and keratinocytes differently. A study of oxidative alterations and apoptosis, Exp. Dermatol., 2005, 14, 117–123.

    CAS  PubMed  Google Scholar 

  33. L. P. Lund, G. S. Timmins, Melanoma, long wavelength ultraviolet and sunscreens: Controversies and potential resolutions, Pharmacol. Ther., 2007, 114, 198–207.

    CAS  PubMed  Google Scholar 

  34. M. A. Cotter, J. Thomas, P. Cassidy, K. Robinette, N. Jenkins, S. R. Florell, S. Leachman, W. E. Samlowski, D. Grossman, N-acetylcysteine protects melanocytes against oxidative stress/damage and delays onset of ultraviolet induced melanoma in mice, Clin. Cancer Res., 2007, 13, 5952–5958.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Q. Wang, R. Setlow, M. Berwick, D. Polsky, A. A. Marghoob, A. W. Kopf, R. S. Bart, Ultraviolet A and melanoma: A review, J. Am. Acad. Dermatol., 2001, 44, 837–846.

    CAS  PubMed  Google Scholar 

  36. X. Z. Song, N. Mosby, J. Yang, A. Xu, Z. Abdel-Malek, A. L. Kadekaro, alpha-MSH activates immediate defense responses to UV-induced oxidative stress in human melanocytes, Pigm. Cell Melanoma Res., 2009, 22, 809–818.

    CAS  Google Scholar 

  37. H. T. Wang, B. Choi, M. S. Tang, Melanocytes are deficient in repair of oxidative DNA damage and UV-induced photoproducts, Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 12180–12185.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. S. Courdavault, C. Baudouin, M. Charveron, B. Canghilem, A. Favier, J. Cadet, T. Douki, Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations, DNA Repair, 2005, 4, 836–844.

    CAS  PubMed  Google Scholar 

  39. S. M. Deleeuw, W. I. M. Simons, B. J. Vermeer, A. A. Schothorst, Comparison of melanocytes and keratinocytes in ultraviolet-induced DNA-damage per minimum erythema dose sunlight - Applicability of ultraviolet action spectra for risk estimates, J. Invest. Dermatol., 1995, 105, 259–263.

    CAS  Google Scholar 

  40. A. A. Schothorst, L. M. Evers, K. C. Noz, R. Filon, A. A. Vanzeeland, Pyrimidine dimer induction and repair in cultured human skin keratinocytes or melanocytes after irradiation with monochromatic ultraviolet-radiation, J. Invest. Dermatol., 1991, 96, 916–920.

    CAS  PubMed  Google Scholar 

  41. A. R. Young, C. S. Potten, O. Nikaido, P. G. Parsons, J. Boenders, J. M. Ramsden, C. A. Chadmick, Human melanocytes and keratinocytes exposed to UVB or UVA in vivo show comparable levels of thymine dimers, J. Invest. Dermatol., 1998, 111, 936–940.

    CAS  PubMed  Google Scholar 

  42. M. Brenner, V. J. Hearing, The protective role of melanin against UV damage in human skin, Photochem. Photobiol., 2008, 84, 539–549.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. S. M. De Leeuw, N. P. M. Smit, M. Van Veldhoven, E. M. Pennings, S. Pavel, J. Simons, A. A. Schothorst, Melanin content of cultured human melanocytes and UV-induced cytotoxicity, J. Photochem. Photobiol., B, 2001, 61, 106–113.

    PubMed  Google Scholar 

  44. C. Kowalczuk, M. Priestner, C. Baller, A. Pearson, N. Cridland, R. Saunders, K. Wakamatsu, S. Ito, Effect of increased intracellular melanin concentration on survival of human melanoma cells exposed to different wavelengths of UV radiation, Int. J. Radiat. Biol., 2001, 77, 883–889.

    CAS  PubMed  Google Scholar 

  45. H. Z. Hill, G. J. Hill, K. Cieszka, P. M. Plonka, D. L. Mitchell, M. F. Meyenhofer, P. T. Xin, R. E. Boissy, Comparative action spectrum for ultraviolet light killing of mouse melanocytes from different genetic coat color backgrounds, Photochem. Photobiol., 1997, 65, 983–989.

    CAS  PubMed  Google Scholar 

  46. H. Y. Park, M. Kosmadaki, M. Yaar, B. A. Gilchrest, Cellular mechanisms regulating human melanogenesis, Cell. Mol. Life Sci., 2009, 66, 1493–1506.

    CAS  PubMed  Google Scholar 

  47. S. Mouret, M.-T. Leccia, J.-L. Bourrain, T. Douki, J.-C. Beani Individual, photosensitivity of human skin and UVA-induced pyrimidine dimers in DNA, J. Invest. Dermatol., 2011, 131, 1539–1546.

    CAS  PubMed  Google Scholar 

  48. T. Tadokoro, N. Kobayashi, B. Z. Zmudzka, S. Ito, K. Wakamatsu, Y. Yamaguchi, K. S. Korossy, S. A. Miller, J. Z. Beer, V. J. Hearing, UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin, FASEB J., 2003, 17, 1177–1179.

    CAS  PubMed  Google Scholar 

  49. Y. Yamaguchi, K. Takahashi, B. Z. Zmudzka, A. Kornhauser, S. A. Miller, T. Tadokoro, W. Berens, J. Z. Beer, V. J. Hearing, Human skin responses to UV radiation: pigment in the upper epidermis protects against DNA damage in the lower epidermis and facilitates apoptosis, FASEB J., 2006, 20, 1486–1488.

    CAS  PubMed  Google Scholar 

  50. S. E. Freeman, H. Hacham, R. W. Gange, D. J. Maytum, J. C. Sutherland, B. M. Sutherland, Wavelength dependence of pyrimidine dimer formation in DNA of human skin irradiated in situ with ultraviolet light, Proc. Natl. Acad. Sci. U. S. A., 1989, 86, 5605–5609.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. F. E. Quaite, B. M. Sutherland, J. C. Sutherland, Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion, Nature, 1992, 358, 576–578.

    CAS  Google Scholar 

  52. S. Mouret, C. Philippe, J. Gracia-Chantegrel, A. Banyasz, S. Karpati, D. Markovitsi, T. Douki, UVA-induced cyclobutane pyrimidine dimers in DNA: a direct photochemical mechanism?, Org. Biomol. Chem., 2010, 8, 1706–1711.

    CAS  PubMed  Google Scholar 

  53. Y. Jiang, M. Rabbi, M. Kim, C. H. Ke, W. Lee, R. L. Clark, P. A. Mieczkowski, P. E. Marszalek, UVA generates pyrimidine dimers in DNA directly, Biophys. J., 2009, 96, 1151–1158.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Z. Kuluncsics, D. Perdiz, E. Brulay, B. Muel, E. Sage, Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts, J. Photochem. Photobiol., B, 1999, 49, 71–80.

    CAS  PubMed  Google Scholar 

  55. J. C. Sutherland, K. P. Griffin, Absorption spectrum of DNA for wavelengths greater than 300 nm, Radiat. Res., 1981, 86, 399–409.

    CAS  PubMed  Google Scholar 

  56. F. L. Meyskens, P. Farmer, J. P. Fruehauf, Redox regulation in human melanocytes and melanoma, Pigm. Cell Res., 2001, 14, 148–154.

    CAS  Google Scholar 

  57. J.-L. Ravanat, C. Saint-Pierre, P. Di Mascio, G. R. Martinez, M. H. Medeiros, J. Cadet, Damage to isolated DNA mediated by singlet oxygen, Helv. Chim. Acta, 2001, 84, 3702–3709.

    CAS  Google Scholar 

  58. S. Gidanian, M. Mentelle, F. L. Meyskens, P. J. Farmer, Melanosomal damage in normal human melanocytes induced by UVB and metal uptake - A basis for the pro-oxidant state of melanoma, Photochem. Photobiol., 2008, 84, 556–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. L. Marrot, J. P. Belaidi, C. Jones, P. Perez, J. R. Meunier, Molecular responses to stress induced in normal human Caucasian melanocytes in culture by exposure to simulated solar UV, Photochem. Photobiol., 2005, 81, 367–375.

    CAS  PubMed  Google Scholar 

  60. J. J. Yohn, D. A. Norris, D. G. Yrastorza, I. J. Buno, J. A. Leff, S. S. Hake, J. E. Repine, Disparate antioxidant enzyme activities in cultured human cutaneous fibroblasts, keratinocytes, and melanocytes, J. Invest. Dermatol., 1991, 97, 405–409.

    CAS  PubMed  Google Scholar 

  61. Q. Y. Wei, J. E. Lee, J. E. Gershenwald, M. I. Ross, P. F. Mansfield, S. S. Strom, L. E. Wang, Z. Z. Guo, Y. W. Qiao, C. I. Amos, M. R. Spitz, M. Duvic, Repair of UV light-induced DNA damage and risk of cutaneous malignant melanoma, J. Natl. Cancer Inst., 2003, 95, 308–315.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Douki.

Additional information

Contribution to the themed issue on the biology of UVA.

Electronic supplementary information (ESI) available: Fig. S1: emission spectra of the UV lamps and Table S1: list and expression of studied DNA repair genes.. See DOI: 10.1039/c1pp05185g

§ This work was supported by a grant from the French “Agence National pour la Recherche” (ANR-07-PCVI-0004-01).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouret, S., Forestier, A. & Douki, T. The specificity of UVA-induced DNA damage in human melanocytes. Photochem Photobiol Sci 11, 155–162 (2012). https://doi.org/10.1039/c1pp05185g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05185g

Navigation