Skip to main content
Log in

Cytodifferentiation of bergmann glia and its relationship with purkinje cells

  • Review Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

The Bergmann glia is composed of unipolar protoplasmic astrocytes in the cerebellar cortex. Bergmann glial cells locate their cell bodies around Purkinje cells, and extend radial or Bergmann fibers enwrapping synapses on Purkinje cell dendrites. During development, Bergmann fibers display a tight association with migrating granule cells, from which the concept of glia-guided neuronal migration has been proposed. Thus, it is widely known that the Bergmann glia is associated with granule cells in the developing cerebellum and with Purkinje cells in the adult cerebellum. As the information on how Bergmann glial cells are related structurally and functionally with differentiating Purkinje cells is quite fragmental, this issue has been investigated using cytochemical techniques for Bergmann glial cells. This review classifies the cytodiffer-entiation of Bergmann glial cells into four stages, that is, radial glia, migration, transformation and protoplasmic astrocytes, and then summarizes their structural relationship with Purkinje cells at each stage. The results conclude that the cytodifferentiation of Bergmann glial cells proceeds in correlation with the migration, dendritogenesis, synaptogenesis and maturation of Purkinje cells. Furthermore, morphological and molecular plasticity of this neuroglia appears to be regulated depending on the cytodifferentiation of nearby Purkinje cells. The functional relevance of this intimate neuron-glial relationship is also discussed with reference to recent studies in cell biology, cell ablation and gene knockout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alho H, Costa E, Fererro P, Fujimoto M, Cosenza-Murphy D, Guidotti A (1985) Diazepam-binding inhibitor: a neuropep-tide located in selected neuronal populations of rat brain. Science 229, 179–82.

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. 3. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol 136, 269–93.

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972a) Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J Comp Neurol 145, 353–97.

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972b) Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J Comp Neurol 145, 399–463.

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1972c) Postnatal development of the cerebellar cortex in the rat. III. Maturation of the components of the granular layer. J Comp Neurol 145, 465–513.

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1975) Postnatal development of the cerebellar cortex in the rat. IV. Spatial organization of bipolar cells, parallel fibers and glial palisades. J Comp Neurol 163, 427–47.

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1978) Prenatal development of the cerebellar system in the rat. I. Cytogenesis and histogenesis of the deep nuclei and the cortex of the cerebellum. J Comp Neurol 179, 23–48.

    Article  PubMed  CAS  Google Scholar 

  • Altman J, Bayer SA (1997) Development of the Cerebellar System. Relation to its Evolution, Structure, and Functions. CRC Press, Boca Raton.

    Google Scholar 

  • Bartsch S, Bartsch U, Dorries U et al. (1992) Expression of tenascin in the developing and adult cerebellar cortex. J Neurosci 12, 736–49.

    PubMed  CAS  Google Scholar 

  • Basco E, Hajos F, Fulop Z (1977) Proliferation of Bergmann glia in the developing rat cerebellum. Anat Embryol 151, 219–22.

    Article  PubMed  CAS  Google Scholar 

  • Baude A, Molnar E, Latawiec D, McIlhinney RA, Somogyi P (1994) Synaptic and nonsynaptic localization of the GluR1 subunit of the AMPA-type excitatory amino acid receptor in the rat cerebellum. J Neurosci 14, 2830–43.

    PubMed  CAS  Google Scholar 

  • Benjelloun-Touimi S, Jacque CM, Derer P, De Vitry F, Maunoury R, Dupouey P (1985) Evidence that mouse astrocytes may be derived from the radial glia. An immunohistochemical study of the cerebellum in the normal and reeler mouse. J Neuroimmunol 9, 87–97.

    Article  PubMed  CAS  Google Scholar 

  • Bergmann C (1857) Notiz über einige Structurverhältnisse des Cerebellum und Rückenmarks. Z Rationelle Med 8, 360–3.

    Google Scholar 

  • Bignami A, Dahl D (1973) Differentiation of astrocytes in the cerebellar cortex and the pyramidal tracts of the newborn rat. An immunofluorescence study with antibodies to a protein specific to astrocytes. Brain Res 49, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Bignami A, Dahl D (1974) The development of Bergmann glia in mutant mice with cerebellar malformations: reeler, staggerer and weaver. Immunofluorescence study with antibodies to the glial fibrillary acidic protein. J Comp Neurol 155, 219–29.

    Article  PubMed  CAS  Google Scholar 

  • Blackstone CD, Moss SJ, Martin LJ, Levey AI, Price DL, Huganir RL (1992) Biochemical characterization and localization of a non-N-methyl-D-aspartate glutamate receptor in rat brain. J Neurochem 58, 1118–26.

    Article  PubMed  CAS  Google Scholar 

  • Bovolenta P, Liem RK, Mason CA (1984) Development of cerebellar astroglia: transitions in form and cytoskeletal content. Dev Biol 102, 248–59.

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Khodorova A, Jonas P et al. (1992) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256, 1566–70.

    Article  Google Scholar 

  • Chan-Palay V, Palay SL (1972) High voltage electron microscopy of rapid Golgi preparations. Neurons and their processes in the cerebellar cortex of monkey and rat. Zeitscrift für Anat Entwicklungsgesch 137, 125–53.

    Article  CAS  Google Scholar 

  • Chaudhry FA, Lehre KP, van Lookeren-Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: Highly differentiated localizations revealed by quantitative ultrastructural immuno-cytochemistry. Neuron 15, 711–20.

    Article  PubMed  CAS  Google Scholar 

  • Choi BH, Lapham LW (1980) Evolution of Bergmann glia in developing human fetal cerebellum: a Golgi, electron microscopic and immunofluorescent study. Brain Res 190, 369–83.

    Article  PubMed  CAS  Google Scholar 

  • Colucci-Guyon E, Gimenez Y, Ribotta M, Maurice T, Babinet C, Privat A (1999) Cerebellar defect and impaired motor co-ordination in mice lacking vimentin. Glia 25, 33–43.

    Article  PubMed  CAS  Google Scholar 

  • Cui W, Allen ND, Skynner M, Gusterson B, Clark AJ (2001) Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia 34, 272–82.

    Article  PubMed  CAS  Google Scholar 

  • Dahl D (1981) The vimentin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination. J Neuro-sci Res 6, 741–8.

    Article  CAS  Google Scholar 

  • Das GD (1976) Differentiation of Bergmann glia cells in the cerebellum: a Golgi study. Brain Res 110, 199–213.

    Article  PubMed  CAS  Google Scholar 

  • Das GD, Lammert GL, McAllister JP (1974) Contact guidance and migratory cells in the developing cerebellum. Brain Res 69, 13–29.

    Article  PubMed  CAS  Google Scholar 

  • Delaney CL, Brenner M, Messing A (1996) Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. J Neurosci 16, 6908–18.

    PubMed  CAS  Google Scholar 

  • Feng L, Hatten ME, Heintz N (1994) Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12, 895–908.

    Article  PubMed  CAS  Google Scholar 

  • Fisher M, Gapp DA, Kozak LP (1981) Immunohistochemical localization of sn-glycerol-3-phosphate dehydrogenase in Bergmann glia and oligodendroglia in the mouse cerebellum. Brain Res 227, 341–54.

    PubMed  CAS  Google Scholar 

  • Fisher M, Mullen RJ (1988) Neuronal influence on glial enzyme expression: evidence from chimeric mouse cerebellum. Neuron 1, 151–7.

    Article  PubMed  CAS  Google Scholar 

  • Fisher M, Trimmer P, Ruthel G (1993) Bergmann glia require continuous association with Purkinje cells for normal pheno-type expression. Glia 8, 172–82.

    Article  PubMed  CAS  Google Scholar 

  • Fukaya M, Yamada K, Nagashima M, Tanaka K, Watanabe M (1999) Down-regulated expression of glutamate transporter GLAST in Purkinje cell-associated astrocytes of reeler and weaver mutant cerebella. Neurosci Res 34, 165–75.

    Article  PubMed  CAS  Google Scholar 

  • Furuya S, Tabata T, Mitoma J et al. (2000) 1-serine and glycine serve as major astroglia-derived trophic factors for cerebel-lar Purkinje neurons. Proc Nat Acad Sci USA 97, 11528–33.

    Article  PubMed  CAS  Google Scholar 

  • Garcion E, Faissner A, Ffrench-Constant C (2001) Knockout mice reveal a contribution of the extracellular matrix molecule tenascin-C to neural precursor proliferation and migration. Development 128, 2485–96.

    PubMed  CAS  Google Scholar 

  • Giménez Y, Ribotta M, Langa F, Menet V, Privat A (2000) Comparative anatomy of the cerebellar cortex in mice lacking vimentin, GFAP, and both vimentin and GFAP. Glia 31, 69–83.

    Article  Google Scholar 

  • Golgi C (1885) Sulla fina anatomia degli organi centrali del sistema nervoso. VIII. Tessuto interstiziale degli organi nervosi centrali (Neuroglia). Riv Sper Freniat 11, 72–123.

    Google Scholar 

  • Gomi H, Yokoyama T, Fujimoto K et al. (1995) Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 14, 29–41.

    Article  PubMed  CAS  Google Scholar 

  • Gregory WA, Edmondson JC, Hatten ME, Mason CA (1988) Cytology and Neuron-glial apposition of migrating cerebellar granule cells in vitro. J Neurosci 8, 1728–38.

    PubMed  CAS  Google Scholar 

  • Grosche JG, Matyash VM, Möller T, Verkhratsky A, Reichen-bach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2, 139–43.

    Article  PubMed  CAS  Google Scholar 

  • Guastavino JM, Sotelo C, Damez-Kinselle I (1990) Hot-foot murine mutation: behavioral effects and neuroanatomical alterations. Brain Res 523, 199–210.

    Article  PubMed  CAS  Google Scholar 

  • Hama K, Kosaka T (1979) Purkinje cell and related neurons and glia cell under high-voltage electron microscopy. In: Progress in Neuropathology, Vol. 4 (Zimmermann HM, ed.). Raven Press, New York, 62–7.

    Google Scholar 

  • Hamprecht B, Dringen R (1995) Energy metabolism. In: Neuro-glia (Kettenmann H, Ransom BR, eds). Oxford University Press, New York, 473–87.

    Google Scholar 

  • Hanke S, Reichenbach A (1987) Quantitative-morphometric aspects of Bergmann glial (Golgi epithelial) cell development in rats. A Golgi study. Anat Embryol 177, 183–8.

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME (1990) Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. Trends Neurosci 13, 179–84.

    Article  PubMed  CAS  Google Scholar 

  • Hatten ME, Mason CA (1990) Mechanisms of glial-guided neuronal migration in vitro and in vivo. Experientia 46, 907–16.

    Article  PubMed  CAS  Google Scholar 

  • Hirano A, Dembitzer HM (1973) Cerebellar alterations in the weaver mouse. J Cell Biol 56, 478–86.

    Article  PubMed  CAS  Google Scholar 

  • Hockfield S, Mckay RDG (1985) Identification of major cell classes in the developing mammalian nervous system. J Neurosci 12, 3310–28.

    Google Scholar 

  • Ichikawa R, Miyazaki T, Kano M et al. (Year) Distal extension of climbing fiber innervation along, beyond dendritic trees of cerebellar Purkinje cells in mutant mice lacking glutamate receptor GluRδ2. J Neurosci (in press).

  • Iino M, Goto K, Kakegawa W, et al. (2001) Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292, 926–9.

    Article  PubMed  CAS  Google Scholar 

  • Irvin DK, Zurcher SD, Nguyen T, Weinmaster G, Kornblum HI (2001) Expression patterns of Notch1, Notch2, and Notch3 suggest multiple functional roles for the Notch-DSL signaling system during brain development. J Comp Neurol 436, 167–81.

    Article  PubMed  CAS  Google Scholar 

  • Khan ZU, Gutierrez A, Miralles CP, De Blas AL (1996) The gamma subunits of the native GABAA/benzodiazepine receptors. Neurochem Res 21, 147–59.

    Article  PubMed  CAS  Google Scholar 

  • Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260, 95–7.

    Article  PubMed  CAS  Google Scholar 

  • Kruse J, Keilhauer G, Faissner A, Timpl R, Schachner M (1985) The J1 glycoprotein — a novel nervous system cell adhesion molecule of the L2/HNK-1 family. Nature 316, 146–8.

    Article  PubMed  CAS  Google Scholar 

  • Kurihara H, Hashimoto K, Kano M et al. (1997) Impaired parallel fiber → Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor δ2 subunit. J Neurosci 17, 9613–23.

    PubMed  CAS  Google Scholar 

  • Kurtz A, Zimmer A, Schnutgen F, Bruning G, Spener F, Muller T (1994) The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120, 2637–49.

    PubMed  CAS  Google Scholar 

  • Lalouette A, Lohof A, Sotelo C, Guenet J, Mariani J (2001) Neurobiological effects of a null mutation depend on genetic context: comparison between two hotfoot alleles of the delta-2 ionotropic glutamate receptor. Neuroscience 105, 443–55.

    Article  PubMed  CAS  Google Scholar 

  • Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15, 1835–53.

    PubMed  CAS  Google Scholar 

  • Levitt P, Rakic P (1980) Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J Comp Neurol 193, 815–40.

    Article  PubMed  CAS  Google Scholar 

  • Lopes-Cardozo M, Larsson OM, Schousboe A (1986) Acetoac-etate and glucose as lipid precursors and energy substrates in primary cultures of astrocytes and neurons from mouse cerebral cortex. J Neurochem 46, 773–8.

    Article  PubMed  CAS  Google Scholar 

  • Malatesta P, Hartfuss E, Gots M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–63.

    PubMed  CAS  Google Scholar 

  • Martin LJ, Blackstone CD, Levey AI, Huganir RL, Price DL (1993) AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience 53, 327–58.

    Article  PubMed  CAS  Google Scholar 

  • McCall MA, Gregg RG, Behringer RR et al. (1996) Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Nat Acad Sci USA 93, 6361–6.

    Article  PubMed  CAS  Google Scholar 

  • Meguro R, Ohishi H, Hoshino K, Hicks TP, Norita M (1999) Metabotropic glutamate receptor 2/3 immunoreactivity in the developing rat cerebellar cortex. J Comp Neurol 410, 243–5.

    Article  PubMed  CAS  Google Scholar 

  • Miale IL, Sidman RL (1961) An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 4, 277–96.

    Article  PubMed  CAS  Google Scholar 

  • Misson JP, Edwards MA, Yamamoto M, Caviness VS Jr (1988) Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Dev Brain Res 44, 95–108.

    Article  CAS  Google Scholar 

  • Mitoma J, Furuya S, Hirabayashi Y (1998a) A novel metabolic communication between neurons and astrocytes: non-essential amino acid 1-serine released from astrocytes is essential for developing hippocampal neurons. Neurosci Res 30, 195–9.

    Article  PubMed  CAS  Google Scholar 

  • Mitoma J, Kasama T, Furuya S, Hirabayashi Y (1998b) Occurrence of an unusual phospholipid, phosphatidyl-L-threonine, in cultured hippocampal neurons. Exogenous 1-serine is required for the synthesis of neuronal phosphatidyl-L-serine and sphingolipids. J Biol Chem 273, 19363–6.

    Article  PubMed  CAS  Google Scholar 

  • Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31, 727–41.

    Article  PubMed  CAS  Google Scholar 

  • Morara S, Brecha NC, Marcotti W, Provini L, Rosina A (1996) Neuronal and glial localization of the GABA transporter GAT-1 in the cerebellar cortex. Neuroreport 7, 2993–6.

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Fritschy JM, Grosche J, Pratt GD, Mohler H, Ketten-mann H (1994) Developmental regulation of voltage-gated K+ channel and GABAA receptor expression in Bergmann glial cells. J Neurosci 14, 2503–14.

    PubMed  CAS  Google Scholar 

  • Muller T, Kettenmann H (1995) Physiology of Bergmann glial cells. Int Rev Neurobiol 38, 341–59.

    Article  PubMed  CAS  Google Scholar 

  • Muller T, Moller T, Berger T, Schnitzer J, Kettenmann H (1992) Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256, 1563–6.

    Article  PubMed  CAS  Google Scholar 

  • Ohishi H, Ogawa-Meguro R, Shigemoto R, Kaneko T, Nakanishi S, Mizuno N (1994) Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex. Neuron 13, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Ono K, Yanagihara M, Mizukawa K, Yuasa S, Kawamura K (1989) Monoclonal antibody that binds to both the prenatal and postnatal astroglia in rodent cerebellum. Dev Brain Res 50, 154–9.

    Article  CAS  Google Scholar 

  • Palay S, Chan-Palay V (1974) Cerebellar Cortex. Springer-Verlag, New York.

    Google Scholar 

  • Pekny M, Leveen P, Pekna M et al. (1995) Mice lacking glial fibrillary acidic protein display astrocytes devoid of intermediate filaments but develop and reproduce normally. EMBO J 14, 1590–8.

    PubMed  CAS  Google Scholar 

  • Pellerin L, Magistretti PJ (1996) Excitatory amino acids stimulate aerobic glycolysis in astrocytes via an activation of the Na+/ K+ ATPase. Dev Neurosci 18, 336–42.

    Article  PubMed  CAS  Google Scholar 

  • Petralia RS, Wenthold RJ (1992) Light and electron immunocy-tochemical localization of AMPA-selective glutamate receptors in the rat brain. J Comp Neurol 318, 329–54.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer B, Buse E, Meyermann R, Rocha MJ, Hamprecht B (1993) Glycogen phosphorylase activity and immunoreactivity during pre- and postnatal development of rat brain. Histochemistry 100, 265–70.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer B, Meyermann R, Hamprecht B (1992) Immunohisto-chemical co-localization of glycogen phosphorylase with the astroglial markers glial fibrillary acidic protein and S-100 protein in rat brain sections. Histochemistry 97, 405–12.

    Article  PubMed  CAS  Google Scholar 

  • Pixley SK, de Vellis J (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res 317, 201–9.

    PubMed  CAS  Google Scholar 

  • Pompolo S, Harley VR (2001) Localization of the SRY-related HMG box protein, SOX9, in rodent brain. Brain Res 906, 143–8.

    Article  PubMed  CAS  Google Scholar 

  • Porter JT, McCarthy KD (1997) Astrocytic neurotransmitter receptors in situ and in vivo. Prog Neurobiol 51, 439–55.

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J Comp Neurol 141, 293–312.

    Article  Google Scholar 

  • Rakic P, Sidman RL (1973) Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol 152, 103–32.

    Article  PubMed  CAS  Google Scholar 

  • Ramón Y Cajal S (1911) Histologie du Systéme Nerveux de L’homme et des Vertébrés. Tome 2. Paris Maloine. Consejo Superior de Investigaciones Cientificas, Madrid.

    Google Scholar 

  • Reichenbach A, Siegel A, Rickmann M, Wolff JR, Noone D, Robinson SR (1995) Distribution of Bergmann glial somata and processes: implications for function. J Hirnforsch 36, 509–17.

    PubMed  CAS  Google Scholar 

  • Savoca R, Ziegler U, Sonderegger P (1995) Effects of 1-serine on neurons in vitro. J Neurosci Meth 61, 159–67.

    Article  CAS  Google Scholar 

  • Schnitzer J, Franke WW, Schachner M (1981) Immunocyto-chemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system. J Cell Biol 90, 435–47.

    Article  PubMed  CAS  Google Scholar 

  • Seil FJ, Eckenstein FP, Reier PJ (1992) Induction of dendritic spine proliferation by an astrocyte secreted factor. Exp Neurol 117, 85–9.

    Article  PubMed  CAS  Google Scholar 

  • Shibata T, Watanabe M, Tanaka K, Wada K, Inoue (1996) Dynamic changes in expression of glutamate transporter mRNAs in developing brain. Neuroreport 7, 705–9.

    Article  PubMed  CAS  Google Scholar 

  • Shibata T, Yamada K, Watanabe M et al. (1997) Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. Journal of Neuro-science 17, 9212–9.

    CAS  Google Scholar 

  • Shibuki K, Gomi H, Chen L et al. (1996) Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron 16, 587–99.

    Article  PubMed  CAS  Google Scholar 

  • Shiga T, Ichikawa M, Hirata Y (1983a) A Golgi study of Bergmann glial cells in developing rat cerebellum. Anat Embryol 167, 191–201.

    Article  PubMed  CAS  Google Scholar 

  • Shiga T, Ichikawa M, Hirata Y (1983b) Spatial and temporal pattern of postnatal proliferation of Bergmann glial cells in rat cerebellum: an autoradiographic study. Anat Embryol 167, 203–11.

    Article  PubMed  CAS  Google Scholar 

  • Sievers J, Pehlemann FW, Gude S, Hartmann D, Berry M (1994) The development of the radial glial scaffold of the cerebellar cortex from GFAP-positive cells in the external granular layer. J Neurocytol 23, 97–115.

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Kim PM (2000) D-amino acids as putative neuro-transmitters: focus on D-serine. Neurochem Res 25, 553–60.

    Article  PubMed  CAS  Google Scholar 

  • Sommer B, Kohler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–9.

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C (1973) Permanence and fate of paramembranous synaptic specializations in ‘mutants’ experimental animals. Brain Res 62, 345–51.

    Article  PubMed  CAS  Google Scholar 

  • Sotelo C, Alvarado-Mallart RM, Frain M, Vernet M (1994) Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J Neurosci 14, 124–33.

    PubMed  CAS  Google Scholar 

  • Spacek J (1985) Three-dimensional analysis of dendritic spines. III. Glial sheath. Anat Embryol 171, 245–52.

    Article  PubMed  CAS  Google Scholar 

  • Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc Nat Acad Sci USA 89, 10955–9.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi-Iwanaga H, Kondo H, Yamakuni T, Takahashi Y (1986) An immunohistochemical study on the ontogeny of cells immunoreactive for spot 35 protein, a novel Purkinje cell-specific protein, in the rat cerebellum. Brain Res 394, 225–31.

    PubMed  CAS  Google Scholar 

  • Tamamaki N, Nakamura K, Okamoto K, Kaneko T (2001) Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res 41, 51–60.

    Article  PubMed  CAS  Google Scholar 

  • Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1985) Observations on Golgi epithelial cells and granule cells in the cerebellum of the reeler mutant mouse. Brain Res 350, 103–12.

    PubMed  CAS  Google Scholar 

  • Trenkner E, Sidman RL (1977) Histogenesis of mouse cerebellum in microwell culture. J Cell Biol 75, 915–40.

    Article  PubMed  CAS  Google Scholar 

  • Tsacopoulos M, Magistretti PJ (1996) Metabolic coupling between glia and neurons. J Neurosci 16, 877–85.

    PubMed  CAS  Google Scholar 

  • Tsurushima H, Yuasa S, Kawamura K, Nose T (1993) Expression of tenascin and BDNF during the migration and differentiation of grafted Purkinje and granule cells in the adult rat cerebellum. Neurosci Res 18, 109–20.

    Article  PubMed  CAS  Google Scholar 

  • Ventura R, Harris KM (1999) Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19, 6897–906.

    PubMed  CAS  Google Scholar 

  • Watanabe M (2002) Glial processes are glued to synapses via Ca2+-permeable glutamate receptors. Trends Neurosci 25, 5–6.

    Article  PubMed  CAS  Google Scholar 

  • Watase K, Hashimoto K, Kano M et al. (1998) Motor disco-ordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur J Neurosci 10, 976–88.

    Article  PubMed  CAS  Google Scholar 

  • Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Nat Acad Sci USA 96, 13409–14.

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Fukaya M, Shibata T et al. (2000) Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol 418, 106–20.

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Watanabe M, Shibata T, Nagashima M, Tanaka K, Inoue Y (1998) Glutamate transporter GLT-1 is transiently localized on growing axons of the mouse spinal cord before establishing astrocytic expression. J Neurosci 18, 5706–13.

    PubMed  CAS  Google Scholar 

  • Yamasaki M, Yamada K, Furuya S, Mitoma J, Hirabayashi Y, Watanabe M (2001) 3-phosphoglycerate dehydrogenase (3PGDH), a key enzyme of 1-serine biosynthesis, is preferentially expressed in the radial glia/astrocyte lineage and olfactory ensheathing glia in the mouse brain. J Neurosci 21, 7691–704.

    PubMed  CAS  Google Scholar 

  • Yang W, Li C, Mansour SL (2001) Impaired motor coordiation in mice that lack punc. Mol Cell Biol 21, 6031–43.

    Article  PubMed  CAS  Google Scholar 

  • Yuasa S (1996) Bergmann glial development in the mouse cerebellum as revealed by tenascin expression. Anat Embryol 194, 223–34.

    Article  PubMed  CAS  Google Scholar 

  • Yuasa S, Kawamura K, Kuwano R, Ono K (1996) Neuron-glia interrelations during migration of Purkinje cells in the mouse embryonic cerebellum. Int J Dev Neurosci 14, 429–38.

    Article  PubMed  CAS  Google Scholar 

  • Yuasa S, Kawamura K, Ono K Yamakuni T, Takahashi Y (1991) Development and migration of Purkinje cells in the mouse cerebellar primordium. Anat Embryol 184, 195–212.

    Article  PubMed  CAS  Google Scholar 

  • Zafra F, Aragon C, Olivares L, Danbolt NC, Gimenez C, Storm-Mathisen J (1995) Glycine transporters are differentially expressed among CNS cells. J Neurosci 15, 3952–69.

    PubMed  CAS  Google Scholar 

  • Zecevic N, Rakic P (1976) Differentiation of Purkinje cells and their relationship to other components of developing cere-bellar cortex in man. J Comp Neurol 167, 27–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, K., Watanabe, M. Cytodifferentiation of bergmann glia and its relationship with purkinje cells. Anato Sci Int 77, 94–108 (2002). https://doi.org/10.1046/j.0022-7722.2002.00021.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.0022-7722.2002.00021.x

Key words

Navigation