Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T01:59:04.205Z Has data issue: false hasContentIssue false

Protein synthesis in tissues of growing lambs

Published online by Cambridge University Press:  09 March 2007

S. R. Davis
Affiliation:
Ministry of Agriculture and Fisheries, Ruakura Agricultural Research Centre, Hamilton, New Zealand
T. N. Barry
Affiliation:
Ministry of Agriculture and Fisheries, Ruakura Agricultural Research Centre, Hamilton, New Zealand
G. A. Hughson
Affiliation:
Ministry of Agriculture and Fisheries, Ruakura Agricultural Research Centre, Hamilton, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The fractional rate of protein synthesis (FSR) in tissues of nine growing lambs (4–5 months of age) was estimated following continuous infusion of L-[4,5–3H]leucine for a period of 7 h. Minimum and upper estimates of FSR were obtained assuming that the specific radioactivity (SRA) of leucine in blood plasma and tissue homogenate respectively defined that of leucyl tRNA.

2. Mean upper estimates of tissue protein FSR (/d) were skin 0·35, longissimus dorsi muscle 0·05, biceps femoris muscle 0·04, liver 0·54, rumen 0·79, cardiac muscle 0·09. Minimum estimates of tissue protein FSR ranged from 0·03 (muscle) to 0·15 (liver).

3. Plasma leucine flux was closely related to body protein content and dietary leucine absorption (r 0·94).

4. The rate of whole-body protein synthesis (WBS) derived from plasma leucine flux corrected for oxidation and localized recycling of leucine into protein was similar to that calculated from the sum of daily protein synthesis in individual tissues using the upper estimate of FSR, i.e. 610 g/d v. 581 g/d.

5. The estimate of WBS derived from plasma leucine flux directly (241 g/d) was similar to that calculated from the sum of minimum estimates of daily protein synthesis in individual tissues (214 g/d).

6. The ratio, intracellular leucine SRA:plasma leucine SRA tended to increase with increasing dietary leucine absorption in all tissues although these factors were only significantly correlated (P < 0·05) in cardiac muscle, skin and rumen. Such relationships suggest an increased exchange of plasma leucine with intracellular leucine with increased food intake.

7. It was estimated that the energy cost of protein synthesis accounted for approximately 42% of daily heat production.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

Airhart, J., Vidrich, A. & Khairallah, E. A. (1974). Biochem J. 140, 539.CrossRefGoogle Scholar
Arnal, M. (1977). Publs Eur. Ass. Anim. Prod. 22, 35.Google Scholar
Barry, T. N. (1981). Br. J. Nutr. (In the Press.)Google Scholar
Barry, T. N., Manley, T. R., Redekopp, C. (1981). Proc. N.Z. Soc. Anim. Prod. (In the Press.)Google Scholar
Buse, M. G. & Weigand, D. A. (1977). Biochem. biophys. Acta 475, 81.Google Scholar
Buttery, P. J., Beckerton, A. & Lubbock, M. H. (1977). Publs Eur. Ass. Anim. Prod. 22, 32.Google Scholar
Buttery, P. J., Beckerton, A., Mitchell, R. M., Davies, K. & Annison, E. F. (1975). Proc. Nutr. Soc. 34, 91A.Google Scholar
Edmunds, B. K., Buttery, P. J. & Fisher, C. (1978). Proc. Nutr. Soc. 37, 32A.Google Scholar
Fern, E. B. & Garlick, P. J. (1974). Biochem. J. 142, 413.Google Scholar
Garlick, P. J., Burk, T. L. & Swick, R. W. (1976). Am. J. Physiol. 230, 1108.CrossRefGoogle Scholar
Garlick, P. J., Millward, D. J. & James, W. P. T. (1973). Biochem. J. 136, 935.Google Scholar
James, W. P. T., Garlick, P. J. & Millward, D. J. (1971). Gut 12, 495.CrossRefGoogle Scholar
Kielanowski, J. (1976). In Protein Metabolism and Nutrition [Cole, D. J. A., Boorman, K. N., Buttery, P. J., Lewis, D., Neale, R. J. and Swan, H., editors]. London: Butterworth.Google Scholar
Leibholz, J. (1969). J. Anim. Sci. 29, 628.CrossRefGoogle Scholar
Ling, E. R., Kon, S. K. & Porter, J. W. G. (1961). In Milk: The Mammary Gland and its Secretion, vol. 2 [Kon, S. K. and Cowie, A. T., editors]. London: Academic Press.Google Scholar
Lobley, G. E. & Harris, C. I. (1977). Publs Eur. Ass. Anim. Prod. 22, 29.Google Scholar
Lobley, G. E., Milne, V., Lovie, J. M., Reeds, P. J. & Pennie, K. (1980). Br. J. Nutr. 43, 491.CrossRefGoogle Scholar
McNurlan, M. A., Tomkins, A. M. & Garlick, P. J. (1979). Biochem. J. 178, 373.CrossRefGoogle Scholar
MacRae, J. C. & Ulyatt, M. J. (1974). J. agric. Sci., Camb. 82, 309.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J., Nnanyelugo, D. O. & Waterlow, J. C. (1976). Biochem. J. 156, 185.CrossRefGoogle Scholar
Millward, D. J., Garlick, P. J. & Reeds, P. J. (1976). Proc. Nutr. Soc. 35, 339.CrossRefGoogle Scholar
Morgan, H. E., Jefferson, L. S., Wolpert, E. B. & Rannels, D. E. (1971). J. biol. Chem. 246, 2163.Google Scholar
Nicholas, G. A., Lobley, G. E. & Harris, C. I. (1978). Br. J. Nutr. 38, 1.Google Scholar
Rattray, P. V. & Jagusch, K. T. (1977). Proc. N.Z. Soc. Anim. Prod. 37, 167.Google Scholar
Reeds, P. J. & Lobley, G. E. (1980). Proc. Nutr. Soc. 39, 43.CrossRefGoogle Scholar
Simon, O., Munchmeyer, R., Bergner, H., Zebrowska, T. & Buraczewska, L. (1978). Br. J. Nutr. 40, 243.CrossRefGoogle Scholar
Soltesz, G., Joyce, J. & Young, M. (1973). Biol. Neonate 23, 139.Google Scholar
Trenkle, A. (1974). J. Anim. Sci. 38, 1142.CrossRefGoogle Scholar
Waterlow, J. C., Garlick, P. J. & Milward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North Holland.Google Scholar
Webster, A. J. F. (1976). In Meat and Animals, Growth and Productivity, p. 89 [Lister, D., Rhodes, D. N., Fowler, V. R. and Fuller, M. F., editors]. London: Plenum.CrossRefGoogle Scholar
Webster, A. J. F., Lobley, G., Reeds, P. J. & Pullar, J. D. (1978). Proc. Nutr. Soc. 37, 21A.Google Scholar