Skip to main content

Advertisement

Log in

The cerebellum in cognitive processes: Supporting studies in children

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Over the last decade, increasing evidence of cognitive functions of the cerebellum during development and learning processes could be ascertained. Posterior fossa malformations such as cerebellar hypoplasia or Joubert syndrome are known to be related to developmental problems in a marked to moderate extent. More detailed analyses reveal special deficits in attention, processing speed, visuospatial functions and language. A study about Dandy Walker syndrome states a relationship of abnormalities in vermis lobulation with developmental problems. Further lobulation or volume abnormalities of the cerebellum and/or vermis can be detected in disorders as fragile X syndrome, Downs’s syndrome or William’s syndrome. Neuropsychological studies reveal a relation of dyslexia and attention deficit disorder with cerebellar functions. These functional studies are supported by structural abnormalities in neuroimaging in these disorders. Acquired cerebellar or vermis atrophy was found in groups of children with developmental problems such as prenatal alcohol exposure or extreme prematurity. Also focal lesions during childhood or adolescence such as cerebellar tumour or stroke are related with neuropsychological abnormalities, which are most pronounced in visuo-spatial, language and memory functions. In addition, cerebellar atrophy was shown to be a bad prognostic factor considering cognitive outcome in children after brain trauma and leukaemia. In ataxia teleangiectasia, a neurodegenerative disorder affecting primarily the cerebellar cortex, a reduced verbal IQ and problems of judgment of duration are a hint of the importance of the cerebellum in cognition. In conclusion, the cerebellum seems to play an important role in many higher cognitive functions especially in learning. There is a suggestion that the earlier the incorrect influence the more pronounced the problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–7.

    Article  PubMed  Google Scholar 

  2. Rapoport M, van Reekum R, Mayberg H. The role of the cerebellum in cognition and behaviour: a selective review. J Neuropsychiatry Clin Neurosci. 2000;12:193–8.

    PubMed  CAS  Google Scholar 

  3. Campitelli G, Gobet F, Parker A. Structure and stimulus familiarity: a study of memory in chess-players with functional magnetic resonance imaging. Span J Psychol. 2005;8:238–45.

    PubMed  Google Scholar 

  4. Shevell MI, Majnemer A. Clinical features of developmental disability associated with cerebellar hypoplasia. Pediatr Neurol. 1996;15:224–9.

    Article  PubMed  CAS  Google Scholar 

  5. Steinlin M, Styger M, Boltshauer E. Cognitive impairments in patients with congenital nonprogressive cerebellar ataxia. Neurology. 1999;53:966–73.

    PubMed  CAS  Google Scholar 

  6. Steinlin M, Schmid M, Landau K, Boltshauser E. Follow-up in children with Joubert syndrome. Neuropediatrics. 1997;28:204–11.

    Article  PubMed  CAS  Google Scholar 

  7. Fenell EB, Gitten JC, Dede DE, Maria BL. Cognition, behavior, and development in Joubert syndrome. J Child Neurol. 1999;14:592–6.

    Article  Google Scholar 

  8. Barreirinho MS, Teixeira J, Moreira NG, Bastos S, Goncalvez S, Barbot MC. Joubert’s syndrome: report of 12 cases. Rev Neurol. 2001;32:812–7.

    PubMed  CAS  Google Scholar 

  9. Boddaert N, Klein O, Ferguson N, Sonigo P, Parisot D, Hertz-Pannier L, et al. Intellectual prognosis of the Dandy-Walker malformation in children: the importance of vermian lobulation. Neuroradiology. 2003;45:320–4.

    PubMed  CAS  Google Scholar 

  10. Gerszten PC, Albright AL. Relationship between cerebellar appearance and function in children with Dandy-Walker syndrome. Paediatr Neurosrurg. 1995;23:86–92.

    Article  CAS  Google Scholar 

  11. Mostofksy SH, Mazzocco MM, Aakalu G, Warsofsky IS, Denckla MG, Reiss AL. Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance. Neurology. 1998;50:121–30.

    Google Scholar 

  12. Cornish K, Kogan C, Turk J, Manly T, James N, Mills A, et al. The emerging fragile X premutation phenotype: evidence from the domain of social cognition. Brain Cogn. 2005;57:53–60.

    Article  PubMed  Google Scholar 

  13. Pinter JD, Eliez S, Schmitt JE, Capone CT, Reiss AL. Neuroanatomy of Down’s syndrome: a high-resolution MRI study. Am J Psychiatry. 2001;158:1659–65.

    Article  PubMed  CAS  Google Scholar 

  14. Chang YC, Huanc CC, Huang SC. Volumetric neuroimaging in children with neurodevelopmental disorders-mapping the brain and behavior. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 1998;39:285–92.

    PubMed  CAS  Google Scholar 

  15. Jones W, Hesselink J, Courchesne E, Duncan T, Matsuda K, Bellugi U. Cerebellar abnormalities in infants and toddlers with Williams syndrome. Dev Med Child Neurol. 2002;44:688–94.

    Article  PubMed  Google Scholar 

  16. Rae C, Karmiloff-Smith A, Less MA, Dixon RM, Grant J, Blamire AM, et al. Brain biochemistry in Williams syndrome: evidence for a role of the cerebellum in cognition? Neurology. 1998;51:33–40.

    Article  PubMed  CAS  Google Scholar 

  17. Nicolson R, Fawcett AJ, Dean P. Dyslexia, development and the cerebellum. Trends Neurosci. 2001;24:515–6.

    Article  PubMed  CAS  Google Scholar 

  18. Stoodley CJ, Harrison EP, Stein JF. Implicit motor learning deficits in dyslexic adults. Neuropsychologia. 2006;44:795–8.

    Article  PubMed  Google Scholar 

  19. Eckert MA, Leonard CM, Richards RL, Aylward EH, Thomson J, Berninger VW. Anatomical correlates of dyslexia: frontal and cerebellar findings. Brain. 2003;126:482–94.

    Article  PubMed  Google Scholar 

  20. Moretti R, Bava A, Torre P, Antonello RM, Cazzato G. Reading errors in patients with cerebellar vermis lesions. J Neurol. 2002;249:461–8.

    Article  PubMed  Google Scholar 

  21. Berquin PC, Gliedd JN, Jacobsen LK, Hamburger SD, Krain AL, Rapoport JL, et al. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology. 1998;50:1087–93.

    PubMed  CAS  Google Scholar 

  22. Zang YF, Yong H, Chao-Zhe Z, Qing-Jiu C, Man-Qiu S, Meng L, et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29:83–91.

    Article  PubMed  Google Scholar 

  23. Sowell ER, Jernigan TL, Mattson SN, Riley EP, Sobel DF, Jones KL. Abnormal development of the cerebellar vermis in children prenatally exposed to alcohol: size reduction in lobules I-V. Alcohol Clin Exp Res. 1996;20:31–4.

    Article  PubMed  CAS  Google Scholar 

  24. Autti-Ramo I, Autti T, Korkman M, Kettunen S, Salonen O, Valanne L. MRI findings in children with school problems who had been exposed prenatally to alcohol. Dev Med Child Neurol. 2002;44:98–106.

    Article  PubMed  Google Scholar 

  25. Roebuck TM, Mattson SN, Riley EP. A review of the neuroanatomical findings in children with fetal alcohol syndrome or prenatal exposure to alcohol. Alcohol Clin Exp Res. 1998;22:339–44.

    Article  PubMed  CAS  Google Scholar 

  26. O’Hare ED, Kan E, Yoshii J, Mattson SN, Riley EP, Thompson PM, et al. Mapping cerebellar vermal morphology and cognitive correlates in prenatal alcohol exposure. Neuroreport. 2005;16:1285–90.

    Article  PubMed  Google Scholar 

  27. Krägeloh-Mann I, Toft P, Lunding J, Andresen J, Pryds O, Lou HC. Brain lesions in preterms: origin, consequences and compensation. Acta Paediatr.1999;88:897–908.

    Article  PubMed  Google Scholar 

  28. Johnsen SD, Tarby TJ, Lewis KS, Bird R, Prenger E. Cerebellar infarction: an unrecognized complication of very low birthweight. J Child Neurol. 2002;17:320–4.

    Article  PubMed  Google Scholar 

  29. Johnsen SD, Bodensteiner JB, Lotze TE. Frequency and nature of cerebellar injury in the extremely premature survivor with cerebral palsy. J Child Neurol. 2005;20:60–4.

    Article  PubMed  Google Scholar 

  30. Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116:844–50.

    Article  PubMed  Google Scholar 

  31. Limperopoulos C, Benson CB, Bassan H, Disalvo DN, Kinnamon DD, Moore M, et al. Cerebellar hemorrhage in the preterm infant: ultrasonographic findings and risk factors. Pediatrics. 2005;116:717–24.

    Article  PubMed  Google Scholar 

  32. Levisohn L, Cronin-Golomb A, Schmahmann JD. Neuropsychological consequences of cerebellar tumour resection in children: cerebellar cognitive affective syndrome in a paediatric population. Brain. 2000;123:1041–50.

    Article  PubMed  Google Scholar 

  33. Riva D, Giorgi C. The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain. 2000;123:1051–61.

    Article  PubMed  Google Scholar 

  34. Steinlin M, Imfeld S, Zulauf P, Boltshauser E, Ridolfi-Lüthi A, Lövblad KO, Perrig W, Kaufmann F. Neuropsychological long term sequelae after posterior fossa tumor resection during childhood. Brain. 2003;126:1998–2008.

    Article  PubMed  Google Scholar 

  35. Beebe DW, Ris MD, Armstrong FD, Fontanesi J, Mulhern R, Holmes, et al. Cognitive and adaptive outcome in low-grade paediatric cerebellar astrocytomas: evidence of diminished cognitive and adaptive functioning in National Collaborative Research Studies (CCG 9891/POG 9130). J Clin Oncol. 2005;23:5198–204.

    Article  PubMed  Google Scholar 

  36. Scott RB, Stoodley CJ, Anslow P, Paul C, Stein JF, Sugden EM, et al. Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol. 2001;43:685–91.

    Article  PubMed  CAS  Google Scholar 

  37. Paquier P, van Mourik M, van Dongen H, Catsman-Berrevoets C, Brison A. Cerebellar mutism syndromes with subsequent dysarthria: a study of three children and a review of the literature. Rev Neurol. 2003;159:1017–27.

    PubMed  CAS  Google Scholar 

  38. Kursano Y, Tanaka Y, Takasanua H, Wada N, Tada T, Kakizawa Y, Hongo K. Transient cerebellar mutism caused by bilateral damage to the dentate nuclei after the second posterior fossa surgery. J Neurosurg. 2006;104:329–31.

    Article  Google Scholar 

  39. Papavasilou AS, Kotsalis C, Trakadas S. Transient cerebellar mutism in the course of acute cerebellitis. Pediatr Neurol. 2004;30:71–4.

    Article  Google Scholar 

  40. Malm J, Kristensen B, Karlsson T, Carlberg B, Fagerlund M, Olsson T. Cognitive impairment in young adults with infratentorial infarcts. Neurology. 1998;51:433–40.

    PubMed  CAS  Google Scholar 

  41. Mostofsky SH, Kunze JC, Cutting LE, Lederman HM, Denckla MB. Judgment of duration in individuals with ataxiatelangiectasia. Dev Neuropsychol. 2000;17:63–74.

    Article  PubMed  CAS  Google Scholar 

  42. Soto Ares G, Vinchon M, Delmaire C, Abecidan E, Dheliemes P, Pruvo JP. Cerebellar atrophy after severe traumatic head injury in children. Childs Nerv Syst. 2001;17:263–9.

    Article  Google Scholar 

  43. Ciesielski KT, Yanofsky R, Ludwig RN, Hill DE, Hart BL, Astur RS, et al. Hypoplasia of the cerebellar vermis and cognitive deficits in survivors of childhood leukemia. Arch Neurol. 1994;51:985–93.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Steinlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinlin, M. The cerebellum in cognitive processes: Supporting studies in children. Cerebellum 6, 237–241 (2007). https://doi.org/10.1080/14734220701344507

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220701344507

Key words

Navigation