Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T08:33:30.729Z Has data issue: false hasContentIssue false

Effect of Vancomycin Therapy for Osteomyelitis on Colonization by Methicillin-Resistant Staphylococcus aureus: Lack of Emergence of Glycopeptide Resistance

Published online by Cambridge University Press:  02 January 2015

Louis Bernard*
Affiliation:
Orthopedic Clinic, Geneva University Hospital, Geneva, Switzerland Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
Pierre Vaudaux
Affiliation:
Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
Albert Vuagnat
Affiliation:
Department of Statistics, St. Michel Hospital, Angoulème, France
Richard Stern
Affiliation:
Orthopedic Clinic, Geneva University Hospital, Geneva, Switzerland
Peter Rohner
Affiliation:
Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
Didier Pittet
Affiliation:
Infection Control Program, Geneva University Hospital, Geneva, Switzerland
Jacques Schrenzel
Affiliation:
Division of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland
Pierre Hoffmeyer
Affiliation:
Orthopedic Clinic, Geneva University Hospital, Geneva, Switzerland
*
Orthopedic Clinic, Geneva University Hospital, 24 rue Micheli-du-Crest, 1211 Geneva 14, Switzerland

Abstract

Background:

In treating orthopedic infections, the long-term impact of vancomycin therapy on colonization by methicillin-resistant Staphylococcus aureus (MRSA) and the emergence of vancomycin-intermediate S. aureus is unknown.

Design:

Prospective surveillance of the effect of long-term vancomycin therapy on colonization by MRSA and the emergence of vancomycin-intermediate S. aureus.

Methods:

Thirty-four patients with MRSA osteomyelitis that was microbiologically documented were longitudinally observed for the emergence of vancomycin-intermediate S. aureus at 3 body sites (wound, anterior nares, and groin) during the initial period of vancomycin therapy and at the 2-month follow-up. Twenty patients received the standard dose (20 mg/kg/d) for 34 ± 6 days and 14 patients received a high dose (40 mg/kg/d) of vancomycin for 37 ± 9 days.

Results:

During vancomycin treatment, global MRSA carriage (all body sites) fell from 100% to 25% in the group of patients receiving the standard dose of vancomycin, and from 100% to 40% in the group receiving the high dose. During the 2-month follow-up period after vancomycin therapy, global MRSA carriage increased from 25% to 55% in the group receiving the standard dose and decreased from 43% to 36% in the group receiving the high dose.

Conclusion:

Therapy with a high dose of vancomycin contributes to the sustained eradication of MRSA carriage without promoting the emergence of glycopeptide resistance.

Type
Original Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hiramatsu, K, Hanaki, H, Ino, X, Yabuta, K, Oguri, T, Tenover, FC. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 1997;40:135136.CrossRefGoogle ScholarPubMed
2.Hiramatsu, K, Aritaka, N, Hanaki, H, et al.Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 1997;350:16701673.Google Scholar
3.Tenover, FC, Lancaster, MV, Hill, BC, et al.Characterization of staphylococci with reduced susceptibilities to vancomycin and other gly-copeptides. J Clin Microbiol 1998;36:10201027.Google Scholar
4.Sieradzki, K, Roberts, RB, Haber, SW, Tomasz, A. The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N Engl J Med 1999;340:517523.CrossRefGoogle Scholar
5.Tabaqchali, S. Vancomycin-resistant Staphylococcus aureus: apocalypse now? Lancet 1997;350:16441645.Google Scholar
6.Hubert, SK, Mohammed, JM, Fridkin, SK, et al.Glycopeptide-interme-diate Staphylococcus aureus: evaluation of a novel screening method and results of a survey of selected U.S. hospitals. J Clin Microbiol 1999;37:35903593.Google Scholar
7.Pujol, M, Peña, C, Pallares, R, et al.Nosocomial Staphylococcus aureus bacteremia among nasal carriers of methicillin-resistant and methi-cillin-susceptible strains. Am J Med 1996;100:509516.Google Scholar
8.Gentry, LO. Antibiotic therapy for osteomyelitis. Infect Dis Clin North Am 1990;4:485499.CrossRefGoogle ScholarPubMed
9.Lew, DP, Waldvogel, FAOsteomyelitis. N Engl J Med 1997;336:9991007.Google Scholar
10.Bernard, L, El-Hajj Pron, B, et al.Outpatient parenteral antimicrobial therapy (OPAT) for the treatment of osteomyelitis: evaluation of efficacy, tolerance and cost. J Clin Pharm Tker 2001;26:445451.Google ScholarPubMed
11.Gernaat-van der Sluis, AJ, Hoogenboom-Verdegaal, AM, Edixhoven, PJ, et al.Prophylactic mupirocin could reduce orthopedic wound infections: 1,044 patients treated with mupirocin compared with 1,260 historical controls. Acta Orthop Scand 1998;69:412414.Google Scholar
12.Harbarth, S, Martin, Y, Rohner, P, Henry, N, Auckenthaler, R, Pittet, D. Effect of delayed infection control measures on a hospital outbreak of methicillin-resistant Staphylococcus aureus. J Hosp Infect 2000;46:4349.Google Scholar
13.National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Disk Susceptibility Tests, 4th ed. Wayne, PA: National Committee for Clinical Laboratory Standards; 1990. Approved standard M2-A4.Google Scholar
14.Walsh, TR, Bolmström, AQwärnström, Aet al.Evaluation of current methods for detection of staphylococci with reduced susceptibility to glycopeptides. J Clin Microbiol 2001;39:24392444.Google Scholar
15.Tenover, FC. Implications of vancomycin-resistant Staphylococcus aureus. J Hosp Infect 1999;43(suppl):S3S7.CrossRefGoogle ScholarPubMed
16.Wei, MQ, Wang, FU, Grubb, WB. Use of contour-clamped homogeneous electric field (CHEF) electrophoresis to type methicillin-resistant Staphylococcus aureus. J Med Microbiol 1992;36:172176.Google Scholar
17.Tenover, FC, Arbeit, RD, Goering, RV, et al.Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995;33:22332239.Google Scholar
18.Boyce, JM. MRSA patients: proven methods to treat colonization and infection. J Hosp Infect 2001;48(suppl A):S9S14.Google Scholar
19.Singh, N, Paterson, DL, Chang, FY, et al.Methicillin-resistant Staphylococcus aureus: the other emerging resistant gram-positive coccus among liver transplant recipients. Clin Infect Dis 2000;30:322327.Google Scholar
20.Martin, JN, Perdreau-Remington, F, Kartalija, M, et al.A randomized clinical trial of mupirocin in the eradication of Staphylococcus aureus nasal carriage in human immunodeficiency virus disease. J Infect Dis 1999;180:896899.Google Scholar
21.Kluytmans, JA, Manders, MJ, van Bommel, E, Verbrugh, H. Elimination of nasal carriage of Staphylococcus aureus in hemodialysis patients. Infect Control Hosp Epidemiol 1996;17:793797.CrossRefGoogle ScholarPubMed
22.Vanden Bergh, MF, Kluytmans, JAvan Hout, BAet al.Cost-effectiveness of perioperative mupirocin nasal ointment in cardiothoracic surgery. Infect Control Hosp Epidemiol 1996;17:786792.CrossRefGoogle ScholarPubMed
23.Cimochowski, GE, Harostock, MD, Brown, R, et al.Intranasal mupirocin reduces sternal wound infection after open heart surgery in diabetics and nondiabetics. Ann Thorac Surg 2001;71:15721578.CrossRefGoogle ScholarPubMed
24.Muder, RR, Boldin, M, Brennen, C, et al.A controlled trial of rifampicin, minocycline, and rifampicin plus minocycline for eradication of methicillin-resistant Staphylococcus aureus in long-term care patients. J Antimicrob Chemother 1994;34:189190.CrossRefGoogle ScholarPubMed
25.Asensio, A, Guerrero, AQuereda, C, et al.Colonization and infection with methicillin-resistant Staphylococcus aureus: associated factors and eradication. Infect Control Hosp Epidemiol 1996;17:2028.CrossRefGoogle ScholarPubMed
26.Darouiche, R, Wright, C, Hamill, R, et al.Eradication of colonization by methicillin-resistant Staphylococcus aureus by using oral minocycline-rifampin and topical mupirocin. Antimicrob Agents Chemother 1991;35:16121615.CrossRefGoogle ScholarPubMed
27.Smith, SM, Eng, RH, Tecson-Tumang, F. Ciprofloxacin therapy for methicillin-resistant Staphylococcus aureus infections or colonizations. Antimicrob Agents Chemother 1989;33:181184.CrossRefGoogle ScholarPubMed
28.Parras, F, Guerrero, MC, Bouza, E, et al.Comparative study of mupirocin and oral co-trimoxazole plus topical fusidic acid in eradication of nasal carriage of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1995;39:175179.Google Scholar
29.Ellison, RT, Judson, FN, Peterson, LC, et al.Oral rifampin and trimethoprim/sulfamethoxazole therapy in asymptomatic carriers of methicillin-resistant Staphylococcus aureus infections. West J Med 1984;140:735740.Google ScholarPubMed
30.Roccaforte, JS, Bittner, MJ, Stumpf, CA, Preheim, LC. Attempts to eradicate methicillin-resistant Staphylococcus aureus colonization with the use of trimethoprim-sulfamethoxazole, rifampin, and bacitracin. Am J Infect Control 1988;16:141146.Google Scholar
31.Peterson, LR, Quick, JN, Jensen, B, et al.Emergence of ciprofloxacin resistance in nosocomial methicillin-resistant Staphylococcus aureus isolates: resistance during ciprofloxacin plus rifampin therapy for methicillin-resistant S. aureus colonization. Arch Intern Med 1990;150:21512155.Google Scholar
32.Chang, SC, Hsieh, SM, Chen, ML, et al.Oral fusidic acid fails to eradicate methicillin-resistant Staphylococcus aureus colonization and results in emergence of fusidic acid-resistant strains. Diagn Microbiol Infect Dis 2000;36:131136.Google Scholar
33.Mulligan, ME, Ruane, PJ, Johnston, L, et al.Ciprofloxacin for eradication of methicillin-resistant Staphylococcus aureus colonization. Am J Med 1987;82:215219.Google ScholarPubMed
34.Canawati, HN, Tuddenham, WJ, Sapico, FL, et al.Failure of rifampin to eradicate methicillin-resistant Staphylococcus aureus colonization. Clin Ther 1982;4:526531.Google ScholarPubMed
35.Massias, L, Dubois, C, de Lentdecker, P, Brodaty, O, Fischler, M, Farinotti, R. Penetration of vancomycin in uninfected sternal bone. Antimicrob Agents Chemother 1992;36:25392541.CrossRefGoogle ScholarPubMed
36.Kitzes-Cohen, R, Farin, D, Piva, G, et al.Pharmacokinetics of vancomycin administered as prophylaxis before cardiac surgery. Ther Drug Monit 2000;22:661667.CrossRefGoogle ScholarPubMed
37.Linares, J. The VISA/GISA problem: therapeutic implications. Clin Microbiol Infect 2001;7(suppl 4):815.Google Scholar
38.Geisel, R, Schmitz, FJ, Fluit, AC, et al.Emergence, mechanism, and clinical implications of reduced glycopeptide susceptibility in Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 2001;20:685697.CrossRefGoogle ScholarPubMed
39.Burnie, J, Matthews, R, Jiman-Fatami, A, Gottardello, P, Hodgetts, S, D'arcy S. Analysis of 42 cases of septicemia caused by an epidemic strain of methicillin-resistant Staphylococcus aureus: evidence of resistance to vancomycin. Clin Infect Dis 2000;31:684689.Google Scholar
40.Pina, P, Maritere, C, Vandenesch, F, et al.An outbreak of Staphylococcus aureus strains with reduced susceptibility to glycopeptides in a French general hospital. Clin Infect Dis 2000;31:13061308.Google Scholar
41.Hiramatsu, K. Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance. Lancet Infect Dis 2001;1:147155.CrossRefGoogle ScholarPubMed