1887

Abstract

Eleven strains of a slow-growing, gram-negative bacterium causing corky root (CR) of lettuce were examined for morphological, physiological, and biochemical traits. Each strain consisted of small, motile rods with one lateral, subpolar, or polar flagellum. All strains were oligotrophic. Typical colonies were nonpigmented, umbonate, firm, and ultimately wrinkled. All strains were aerobic, metabolized glucose oxidatively, were oxidase positive and weakly catalase positive, and reduced nitrate to nitrite and ammonia but not to nitrogen gas. All of the strains tested were nitrogenase and arginine dihydrolase negative. Ethanol was not converted to acetic acid, and none of the 11 CR strains grew at pH 5.1 or below. The CR bacterium did not fluoresce and did accumulate poly-β-hydroxybutyrate granules. The CR strains did not hydrolyze starch or Tween 80, but did hydrolyze Tween 20. Very few carbon sources were utilized. The only isoprenoid quinone detected was ubiquinone Q10. The whole-cell fatty acid profiles of the CR strains consisted of several saturated and unsaturated straight-chain fatty acids, 2-hydroxy fatty acids, one cyclofatty acid, and one methylated fatty acid and resembled the fatty acid profile of . The guanine-plus-cytosine content of the DNA was 59 mol%, which is below the range for . DNA-DNA homology studies indicated that the CR bacterium and are related but not the same species. The quinone and fatty acid compositions of the CR bacterium and differ substantially from those of other spp., indicating that these organisms do not belong to the genus proper. The characteristics of the CR bacterium do not conform to those of any previously described genus, and we propose a new genus, , with one species, , for strains of the CR bacterium. Additional tests will be needed to determine whether can be transferred to the genus . Strain CA1 is the type strain of and has been deposited in the American Type Culture Collection and the National Collection of Plant Pathogenic Bacteria as strains ATCC 49355 and NCPPB 3629, respectively, together with strains FL1 (= ATCC 49356 = NCPPB 3628), NY11 (= ATCC 49382 = NCPPB 3631), and WI3 (=ATCC 49381 = NCPPB 3630). One additional strain that caused CR of lettuce had physiological and biochemical traits similar to those of but produced yellow colonies, had a higher guanine-plus-cytosine content (64 mol%), and exhibited lower DNA homology (54%) with DNA of the type strain. More strains will need to be studied to determine the taxonomic position of this strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-40-2-175
1990-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/40/2/ijsem-40-2-175.html?itemId=/content/journal/ijsem/10.1099/00207713-40-2-175&mimeType=html&fmt=ahah

References

  1. Bally R., Thomas-Bauzon D., Heulin T., Balandreau J., Richard C., De Ley J. 1983; Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. Can. J. Microbiol. 29:881–887
    [Google Scholar]
  2. Bauwens M., De Ley J. 1981 Improvements in the taxonomy of Flavobacterium by DNA:rRNA hybridizations. 27–31 Reichenbach H., Weeks O. B.ed the Flavobacterium-Cytophaga group Proceedings of the International Symposium on Yellow-Pigmented Gram-Negative Bacteria of the Flavobacterium-Cytophaga GroupGesellschaft fuer Biotechnologische Forschung mbH, Braunschweig-Stoeckheim, Federal Republic of Germany
    [Google Scholar]
  3. Becking J. H. 1984 Genus Beijerinckia Derx 1950, 145. 311–321 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  4. Beltz G. S., Jacobs K. A., Eickbush T. H., Cherbas P. T., Kafatos F. C. 1983; Homology determination by filter hybridization. Methods Enzymol. 100:266–285
    [Google Scholar]
  5. Bezbaruah R. L., Pillai K. R., Gogoi B. K., Baruah J. N. 1987; Effect of growth temperature and media composition on the fatty acid composition of Bacillus stearothermophilus AN002. Antonie van Leeuwenhoek 54:37–45
    [Google Scholar]
  6. Bolobova A. V., Andreev L. V. 1986; Study of lipid component of Rhizobium lupini lipopolysaccharides. Institute Biochemistry, Academy of Sciences of the USSR 50:1493–1500
    [Google Scholar]
  7. Brown P. R., Michelmore R. W. 1988; The genetics of corky root resistance in lettuce. Phytopathology 78:1145–1150
    [Google Scholar]
  8. Carr J. G., Passmore S. M. 1979 Methods for identifying acetic acid bacteria. 33–47 Skinner F. A., Lovelock D. W.ed Identification methods for microbiologists, 2nd ed.. Academic Press, Inc. (London), Ltd.; London:
    [Google Scholar]
  9. Close T. J., Rogowski P. M., Kado C. I., Winans S. C., Yanofski M. F., Nester E. W. 1987; Dual control of Agrobacterium tumefaciens Ti plasmid virulence genes. J. Bacteriol. 169:5113–5118
    [Google Scholar]
  10. Collins M. D. 1985; Isoprenoid quinone analyses in bacterial classification and identification. Soc. Appl. Bacteriol. Tech. Ser. 20:267–287
    [Google Scholar]
  11. Collins M. D., Jones D. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45:316–354
    [Google Scholar]
  12. Cowan S. T., Steel K. J. 1965 Manual for the identification of medical bacteria. Cambridge University Press; Cambridge:
    [Google Scholar]
  13. Dees S. B., Moss C. W., Weaver R. E., Hollis D. 1979; Cellular fatty acid composition of Pseudomonas paucimobilis and groups Ilk-2, Ve-1, and Ve-2. J. Clin. Microbiol. 10:206–209
    [Google Scholar]
  14. De Ley J., Swings J. 1984 Genus II. Gluconobacter Asai 1935, 689, emend, unit char. Asai, Lizuka and Komagata 1964, 100. 275–278 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  15. De Vos De Ley J. 1983; Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33:485–509
    [Google Scholar]
  16. De Vos P., van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B., Kersters K., Lizzaraga P., De Ley J. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid:ribosomal ribonucleic acid hybridizations. Int. J. Syst. Bacteriol. 39:35–49
    [Google Scholar]
  17. Doetsch R. N. 1981 Determinative methods of light microscopy. 21–51 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  18. Dreyfus B., Garcia J. L., Gillis M. 1988; Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stemnodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int. J. Syst. Bacteriol. 38:89–98
    [Google Scholar]
  19. Frateur J. 1950; Essai sur la systématique des Acetobacters. Cellule 53:287–392
    [Google Scholar]
  20. Goto M., Kuwata H. 1988; Rhizobacter daucus gen. nov., sp. nov., the causal agent of carrot bacterial gall. Int. J. Syst. Bacteriol. 38:233–239
    [Google Scholar]
  21. Guirard B. M., Snell E. E. 1981 Biochemical factors in growth. 79–111 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; Washington, D.C:
    [Google Scholar]
  22. Hattori R., Hattori T. 1980; Sensitivity to salts and organic compounds of soil bacteria isolated on diluted media. J. Gen. Appl. Microbiol. 26:1–14
    [Google Scholar]
  23. Holmes B., Owen R. J. 1981 Emendation of the genus Flavobacterium and the status of the genus. Developments after the 8th edition of Bergey’s Manual. 17–26 Reichenbach H., Weeks O. B.ed The Flavobacterium-Cytophaga group Proceedings of the International Symposium on Yellow-Pigmented Gram-Negative Bacteria of the Flavobacterium-Cytophaga Group. Gesellschaft fuer Biotechnologische Forschung mbHBraunschweig-Stoeckheim, Federal Republic of Germany
    [Google Scholar]
  24. Holmes B., Owen R. J., Evans A., Malnick H., Willcox W. R. 1977; Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int. J. Syst. Bacteriol. 27:133–146
    [Google Scholar]
  25. Holmes B., Popoff M., Kiredijan M., Kersters K. 1988; Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int. J. Syst. Bacteriol. 38:406–416
    [Google Scholar]
  26. Holmes B., Steigerwalt A. G., Weaver R. E., Brenner D. J. 1986; Chryseomonas polytricha gen. nov., sp. nov., a Pseudomonas-like organism from human clinical specimens and formerly known as group Ve-1. Int. J. Syst. Bacteriol. 36:161–165
    [Google Scholar]
  27. Holmes B., Steigerwalt A. G., Weaver R. E., Brenner D. J. 1987; Chryseomonas luteola comb. nov. and Flavimonas oryzihabitans gen. nov., comb, nov., Pseudomonas-like species from human clinical specimens and formerly known, respectively, as groups Ve-1 and Ve-2. Int. J. Syst. Bacteriol. 37:245–250
    [Google Scholar]
  28. Jantzen E., Bryn K. 1985; Whole-cell and lipopolysaccharide fatty acids and sugars of gram-negative bacteria. Soc. Appl. Bacteriol. Tech. Ser. 20:145–171
    [Google Scholar]
  29. Johnson J. L. 1985 Determination of DNA base composition. 1–31 Gottschalk G.ed Methods in microbiology 18 Academic Press; Inc. (London), Ltd., London:
    [Google Scholar]
  30. Jordan D. C. 1984 Family III. Rhizobiaceae Conn 1939, 321. 234–244 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  31. Kado C. I., Heskett M. S. 1970; Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology 60:969–976
    [Google Scholar]
  32. Kersters K., De Ley J. 1984 Genus III. Agrobacterium Conn 1942, 359. 244–254 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  33. Kersters K., De Ley J. 1984 Genus Alcaligenes Castellani and Chalmers 1919, 936. 361–373 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  34. Knoesel D. H. 1984 Genus IV. Phyllobacterium (ex Knoesel 1962) nom. rev. (Phyllobacterium Knoesel 1962, 96). 254256 Krieg N. R., Holt J. G.ed Bergey’s manual for systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  35. Kodama K., Kimura N., Komagata K. 1985; Two new species of Pseudomonas-. P. oryzihabitans isolated from rice paddy and clinical specimens and P. luteola isolated from clinical specimens. Int. J. Syst. Bacteriol. 35:467–474
    [Google Scholar]
  36. Kuykendall L. D., Roy M. A., O’Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol. 38:358–361
    [Google Scholar]
  37. Mandel M., Schildkraut C. L., Marmur J. 1968; Use of CsCl density gradient analysis for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:184–195
    [Google Scholar]
  38. Moore L. V. H., Johnson J. L., Moore W. E. C. 1987; Selenomonas noxia sp. nov., Selenomonas flueggi sp. nov., Selenomonas infelix sp. nov., Selenomonas dianae sp. nov., and Selenomonas artemidis sp. nov., from the human gingival crevice. Int. J. Syst. Bacteriol. 36:271–280
    [Google Scholar]
  39. Ohta H., Hattori T. 1983; Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek 49:429–446
    [Google Scholar]
  40. Owen R. J., Jackman P. J. H. 1982; The similarities between Pseudomonas paucimobilis and allied bacteria derived from analysis of deoxyribonucleic acids and electrophoretic protein patterns. J. Gen. Microbiol. 128:2945–2954
    [Google Scholar]
  41. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. Soc. Appl. Bacteriol. Tech. Ser. 20:67–93
    [Google Scholar]
  42. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol. 29:17–40
    [Google Scholar]
  43. Schaad N. W. 1980 Laboratory guide for identification of plant pathogenic bacteria. American Phytopathological Society; St. Paul, Minn:
    [Google Scholar]
  44. Sierra G. 1957; A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie van Leeuwenhoek 23:15–22
    [Google Scholar]
  45. Smibert R. M., Krieg N. R. 1981 General characterization. 409–443 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.ed Manual of methods for general bacteriology American Society for Microbiology; 6Washington, D.C:
    [Google Scholar]
  46. Suwa Y., Hattori T. 1986; Cellular fatty acids and quinone systems of oligotrophic soil bacteria. J. Gen. Appl. Microbiol. 32:451–471
    [Google Scholar]
  47. Tahara Y., Kameda M., Yamada Y., Kondo K. 1976; A new lipid: the ornithine and taurine-containing “Cerilipin.”. Agric. Biol. Chern. 40:243–244
    [Google Scholar]
  48. Tahara Y., Yamada Y., Kondo K. 1976; Phospholipid composition of Gluconobacter cerinus. Agric. Biol. Chern. 40:2355–2360
    [Google Scholar]
  49. Tamaoka J., Ha D. M., Komagata K. 1987; Reclassification of Pseudomonas acidivorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Telalay 1956 as Comamonas acidivorans comb. nov. and Comamonas testosteroni comb, nov., with an emended description of the genus Comamonas. Int. J. Syst. Bacteriol. 37:52–59
    [Google Scholar]
  50. van Bruggen A. H. C., Brown P. R., Jochimsen K. N. 1989; Corky root of lettuce caused by strains of a gram-negative bacterium from muck soils of Florida, New York, and Wisconsin. Appl. Environ. Microbiol. 55:2635–2640
    [Google Scholar]
  51. van Bruggen A. H. C., Grogan R. G., Bogdanoff C. P., Waters C. M. 1988; Corky root of lettuce in California caused by a gram-negative bacterium. Phytopathology 78:1139–1145
    [Google Scholar]
  52. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevisky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., Stackebrandt E., Starr M. P., Truper H. G. 1987; Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Bacteriol. 37:463–464
    [Google Scholar]
  53. Wiegel J. K. W., Schlegel H. G. 1984 Genus Xanthobacter Wiegel, Wilke, Baumgarten, Opitz and Schlegel 1978, 573. 325–333 Krieg N. R., Holt J. G.ed Bergey’s manual of systematic bacteriology 1 The Williams & Wilkins Co.; Baltimore:
    [Google Scholar]
  54. Willems A., Gillis M., Kersters K., van den Broecke L., De Ley J. 1987; Transfer of Xanthomonas ampelina Panagopoulos 1969 to a new genus, Xylophilus gen. nov., as Xylophilus ampelinus (Panagopoulos 1969) comb. nov.. Int. J. Syst. Bacteriol. 37:422–430
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-40-2-175
Loading
/content/journal/ijsem/10.1099/00207713-40-2-175
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error