1887

Abstract

A novel, moderately thermophilic, strictly anaerobic, mixotrophic bacterium, designated strain LF13, was isolated from a deep-sea hydrothermal chimney sample that was collected at a vent site at 14° 45′ N, 44° 59′ W on the Mid-Atlantic Ridge. Cells were Gram-negative, thin, non-motile rods of variable length. Strain LF13 grew optimally at pH 6·8–7·0 and 60 °C with 2·5 % (w/v) NaCl. It grew chemo-organoheterotrophically, fermenting proteinaceous substrates, pyruvate and Casamino acids. The strain was able to grow by respiration, utilizing molecular hydrogen (chemolithoheterotrophically) or acetate as electron donors and nitrate as an electron acceptor. Ammonium was formed in the course of denitrification. One-hundred milligrams of yeast extract per litre were required for growth of the strain. The G+C content of the genomic DNA of strain LF13 was 42·5 mol%. Neither 16S rDNA sequence similarity values nor phylogenetic analysis unambiguously related strain LF13 with members of any recognized bacterial phyla. On the basis of 16S rDNA sequence comparisons, and in combination with physiological and morphological traits, a novel genus, , is proposed, with strain LF13 (=DSM 13497 =VKM B-2286) representing the type species, .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02390-0
2003-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530323.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02390-0&mimeType=html&fmt=ahah

References

  1. Alain K., Querellou J., Lesongeur F., Pignet P., Crassous P., Raguenes G., Cueff V., Cambon-Bonavita M.-A. 2002a; Caminibacter hydrogeniphilus gen. nov., sp. nov. a novel thermophilic hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323 [CrossRef]
    [Google Scholar]
  2. Alain K., Marteinsson V. T., Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Prieur D., Birrien J.-L. 2002b; Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1331–1339 [CrossRef]
    [Google Scholar]
  3. Alain K., Pignet P., Zbinden M.8 other authors 2002c; Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1621–1628 [CrossRef]
    [Google Scholar]
  4. Antoine E., Cilla V., Meunier J. R., Guezennec J., Lesongeur F., Barbier G. 1997; Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 47:1118–1123 [CrossRef]
    [Google Scholar]
  5. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  6. Blöchl E., Rachel R., Burggraf S., Hafenbradl D., Jannasch H. W., Stetter K. O. 1997; Pyrolobus fumarii , gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1:14–21 [CrossRef]
    [Google Scholar]
  7. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov. and sp. nov. – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155 [CrossRef]
    [Google Scholar]
  8. Caldwell D. E., Caldwell S. J., Laycock J. P. 1976; Thermothrix thiopara gen. et sp. nov., a facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature. Can J Microbiol 22:1509–1517 [CrossRef]
    [Google Scholar]
  9. Cataldo D. A., Haroon M., Schrader L. E., Youngs V. L. 1975; Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80 [CrossRef]
    [Google Scholar]
  10. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 1982; Numerical methods for inferring phylogenetic trees. Q Rev Biol 57:379–404 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  13. Garrity G. M., Holt J. G. 2001; Taxonomic outline of the Archaea and Bacteria . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp 155–166Edited by Boone D. R., Castenholz R. W. New York: Springer-Verlag;
    [Google Scholar]
  14. Götz D., Banta A., Beveridge T. J., Rushdi A. I., Simoneit B. R. T., Reysenbach A.-L. 2002; Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov. two novel, thermophilic, hydrogen-oxidizing microaeropholes from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52:1349–1359 [CrossRef]
    [Google Scholar]
  15. Hafenbradl D., Keller M., Dirmeier R., Rachel R., Roßnagel P., Burggraf S., Huber H., Stetter K. O. 1996; Ferroglobus placidus gen. nov. sp. nov. a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166:308–314 [CrossRef]
    [Google Scholar]
  16. Harmsen H. J. M., Prieur D., Jeanthon C. 1997; Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl Environ Microbiol 63:2876–2853
    [Google Scholar]
  17. Huber R., Wilharm T., Huber D.7 other authors 1992; Aquifex pyrophilus gen. nov., sp. nov. represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351 [CrossRef]
    [Google Scholar]
  18. Huber H., Rossnagel P., Woese C. R., Rachel R., Langworthy T. A., Stetter K. O. 1996; Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium Ammonifex degensii gen. nov. sp. nov. Syst Appl Microbiol 19:40–49 [CrossRef]
    [Google Scholar]
  19. Huber H., Diller S., Horn C., Rachel R. 2002; Thermovibrio ruber gen. nov., sp. nov. an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae . Int J Syst Evol Microbiol 521859–1865 [CrossRef]
    [Google Scholar]
  20. Jeanthon C. 2000; Molecular ecology of hydrothermal vent microbial communities. Antonie van Leeuwenhoek 77:117–133 [CrossRef]
    [Google Scholar]
  21. Jeanthon C., L'Haridon S., Cueff V., Banta A., Reysenbach A.-L., Prieur D. 2002; Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52765–772 [CrossRef]
    [Google Scholar]
  22. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  23. L'Haridon S., Cilia V., Messner P., Raguenes G., Gambacorta A., Sleytr U. B., Prieur D., Jeanthon C. 1998; Desulfurobacterium thermolithotrophum gen. nov. sp. nov. a novel autotrophic, sulfur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:701–711 [CrossRef]
    [Google Scholar]
  24. Ludwig W., Strunk O. 1997 The arb project ( http://www.arb-home.de) (last accessed 5 June 2002)
  25. Maidak B. L., Cole J. R., Lilburn T. G.7 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  26. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  27. Marteinsson V. T., Birrien J. L., Kristjansson J. K., Prieur D. 1995; First isolation of thermophilic non-sporulating heterotrophic bacteria from deep-sea hydrothermal vents. FEMS Microbiol Ecol 18:163–174 [CrossRef]
    [Google Scholar]
  28. Marteinsson V. T., Birrien J. L., Raguenes G., da Costa M. S., Prieur D. 1999; Isolation and characterization of Thermus thermophilus Gy1211 from a deep-sea hydrothermal vent. Extremophiles 3:247–251 [CrossRef]
    [Google Scholar]
  29. Miroshnichenko M. L., Gongadze G. M., Lysenko A. M., Bonch-Osmolovskaya E. A. 1994; Desulfurella multipotens sp. nov., a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago. Arch Microbiol 161:88–93
    [Google Scholar]
  30. Miroshnichenko M. L., Kostrikina N. A., L'Haridon S., Jeanthon C., Hippe H., Stackebrandt E., Bonch-Osmolovskaya E. A. 2002; Nautilia lithotrophica gen. nov. sp. nov. a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304 [CrossRef]
    [Google Scholar]
  31. Moyer C. L., Dobb F. C., Karl D. M. 1995; Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system. Appl Environ Microbiol 61:1555–1562
    [Google Scholar]
  32. Nazina T. N., Tourova T. P., Poltaraus A. B.8 other authors 2001; Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus , Bacillus thermocatenulatus , Bacillus thermoleovorans , Bacillus kaustophilus , Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans . Int J Syst Evol Microbiol 51433–446
    [Google Scholar]
  33. Owen R. J., Lapage S. P. 1976; The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J Appl Bacteriol 41:335–340 [CrossRef]
    [Google Scholar]
  34. Prieur D., Erauso G., Jeanthon C. 1995; Hyperthermophilic life at deep-sea hydrothermal vents. Planet Space Sci 43:115–122 [CrossRef]
    [Google Scholar]
  35. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  36. Reysenbach A.-L., Longnecker K., Kirshtein J. 2000; Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806 [CrossRef]
    [Google Scholar]
  37. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  38. Sievert S. M., Brinkhoff T., Muyzer G., Ziebis W., Kuever J. 1999; Spatial heterogeneity of bacterial populations along an environmental gradient at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol 65:3834–3842
    [Google Scholar]
  39. Sievert S. M., Kuever J. M., Muyzer G. 2000; Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl Environ Microbiol 66:3102–3109 [CrossRef]
    [Google Scholar]
  40. Slobodkin A. I., Zavarzina D. G., Sokolova T. G., Bonch-Osmolovskaya E. A. 1999; Dissimilatory reduction of inorganic electron acceptors by anaerobic thermophilic prokaryotes. Microbiology (English translation of Mikrobiologiya) 68:522–542
    [Google Scholar]
  41. Stackebrandt E., Hippe H. 2001; Taxonomy and systematics. In Clostridia, Biotechnology and Medical Applications pp 19–48Edited by Bahl H., Dürre P. . Weinheim: Wiley-VHC;
    [Google Scholar]
  42. Takai K., Horikoshi K. 2000; Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17 [CrossRef]
    [Google Scholar]
  43. Völkl P., Huber R., Drobner E., Rachel R., Burggraf S., Trincone A., Stetter K. O. 1993; Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926
    [Google Scholar]
  44. Wery N., Lesongeur F., Pignet P., Derennes V., Cambon-Bonavita M.-A., Godfroy A., Barbier G. 2001; Marinitoga camini gen. nov., sp. nov. a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504
    [Google Scholar]
  45. Williams R. A. D., da Costa M. S. 1992; The genus Thermus and related microorganisms. In The Prokaryotes , 2nd edn. vol 1 pp 3746–3751Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer-Verlag;
    [Google Scholar]
  46. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2888
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02390-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02390-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error