1887

Abstract

Two thermophilic, Gram-negative, non-spore-forming, multicellular filamentous micro-organisms were isolated from thermophilic granular sludge in an upflow anaerobic sludge blanket reactor treating fried soybean-curd manufacturing waste water (strain UNI-1) and from a hot spring sulfur-turf in Japan (strain STL-6-O1). The filaments were longer than 100 μm and of 0·2–0·3 μm (strain UNI-1) or 0·7–0·8 μm (strain STL-6-O1) in width. Strain UNI-1 was a strictly anaerobic organism. The optimum temperature for growth was around 55 °C; growth occurred in the range 50–60 °C. The optimum pH for growth was around 7·0; growth occurred in the range pH 6·0–8·0. Strain STL-6-O1 was a facultatively aerobic bacterium. The optimum temperature for growth was around 55 °C; growth occurred in the range 37–65 °C. The optimum pH for growth was around 7·5–8·0; growth occurred in the range pH 7·0–9·0. The two organisms grew chemo-organotrophically on a number of carbohydrates and amino acids in the presence of yeast extract. The G+C content of the DNA of strains UNI-1 and STL-6-O1 was 54·5 and 59·0 mol%, respectively. Major cellular fatty acids for strain UNI-1 were C, C, C and C, whereas those for strain STL-6-O1 were C, C, C and iso-C. MK-10 was the major quinone from aerobically grown STL-6-O1 cells. Phylogenetic analyses based on 16S rDNA sequences revealed that both strains belong to an uncultured, previously recognized clone lineage of the phylum (formerly known as green non-sulfur bacteria). These phenotypic and genetic properties suggested that each strain should be classified into a new independent genus; hence, the names and are proposed for strains UNI-1 (=JCM 11387=DSM 14523) and STL-6-O1(=JCM 11388=DSM 14525), respectively. These strains represent the type and sole species of the genera and , respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02699-0
2003-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531843.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02699-0&mimeType=html&fmt=ahah

References

  1. Björnsson L., Hugenholtz P., Tyson G. W., Blackall L. L. 2002; Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology 148:2309–2318
    [Google Scholar]
  2. Demharter W., Hensel R., Smida J., Stackebrandt E. 1989; Sphaerobacter thermophilus gen. nov. sp. nov. A deeply rooted member of the actinomycetes subdivision isolated from thermophilically treated sewage sludge. Syst Appl Microbiol 11:261–266 [CrossRef]
    [Google Scholar]
  3. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp 21–33Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  5. Garrity G. E., Holt J. G. 2001; Phylum BVI. Chloroflexi phy. nov. In Bergey's Manual of Systematic Bacteriology pp 427–446Edited by Garrity G. M. New York: Springer;
    [Google Scholar]
  6. Gorlenko V. M. 1976; Characteristics of filamentous phototrophic bacteria from freshwater lakes. Microbiology (English translation of Mikrobiologiya 44:682–684
    [Google Scholar]
  7. Gorlenko V. M., Pivovarova T. A. 1977; On the belonging of bluegreen alga Oscillatoria coerulescens Gicklhorn, 1921 to a new genus of chlorobacteria Oscillochloris nov. gen. Izv Akad Nauk SSSR Ser Biol 3:396–409
    [Google Scholar]
  8. Hanada S., Pierson B. K. 2002; The family Chloroflexaceae . In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd edn. release 3.11, November 22 2002 http://link.springer.de/link/service/books/10125/index.htmEdited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt. New York: Springer;
    [Google Scholar]
  9. Hanada S., Hiraishi A., Shimada K., Matsuura K. 1995a; Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Bacteriol 45:676–681 [CrossRef]
    [Google Scholar]
  10. Hanada S., Hiraishi A., Shimada K., Matsuura K. 1995b; Isolation of Chloroflexus sp. and related thermophilic photosynthetic bacteria from hot springs using an improved isolation procedure. J Gen Appl Microbiol 41:119–130 [CrossRef]
    [Google Scholar]
  11. Hanada S., Takaichi S., Matsuura K., Nakamura K. 2002; Roseiflexus castenholzii gen. nov., sp. nov. a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193
    [Google Scholar]
  12. Hiraishi A. 1992; Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213 [CrossRef]
    [Google Scholar]
  13. Holt J. G., Lewin R. A. 1968; Herpetosiphon aurantiacus gen. et sp. n., a new filamentous gliding organism. J Bacteriol 95:2407–2408
    [Google Scholar]
  14. Hugenholtz P. 2002; Exploring prokaryotic diversity in the genomic era. Genome Biol 3:REVIEWS0003
    [Google Scholar]
  15. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774
    [Google Scholar]
  16. Imachi H., Sekiguchi Y., Kamagata Y., Ohashi A., Harada H. 2000; Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66:3608–3615 [CrossRef]
    [Google Scholar]
  17. Juretschko S., Loy A., Lehner A., Wagner M. 2002; The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol 25:84–99 [CrossRef]
    [Google Scholar]
  18. Kamagata Y., Mikami E. 1991; Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196 [CrossRef]
    [Google Scholar]
  19. Keppen O. I., Baulina O. I., Lysenko A. M., Kondratieva E. N. 1993; New green bacterium belonging to family Chloroflexaceae . Microbiology (English translation of Mikrobiologiya) 62:179–185
    [Google Scholar]
  20. Keppen O. I., Baulina O. I., Kondratieva E. N. 1994; Oscillochloris trichoides neotype strain DG-6. Photo Res 41:29–33 [CrossRef]
    [Google Scholar]
  21. Keppen O. I., Tourova T. P., Kuznetsov B. B., Ivanovsky R. N., Gorlenko V. M. 2000; Proposal of Oscillochloridaceae fam. nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates. Int J Syst Evol Microbiol 50:1529–1537 [CrossRef]
    [Google Scholar]
  22. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  23. Lewin R. A. 1970; New Herpetosiphon species ( Flexibacterales . Can J Microbiol 18:517–520
    [Google Scholar]
  24. Maymo-Gatell X., Chien Y., Gossett J. M., Zinder S. H. 1997; Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276:1568–1571 [CrossRef]
    [Google Scholar]
  25. Pfennig N., Wagener S. 1986; An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4:303–306 [CrossRef]
    [Google Scholar]
  26. Pierson B. K., Castenholz R. W. 1974; A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus , gen. and sp. nov. Arch Microbiol 100:5–24 [CrossRef]
    [Google Scholar]
  27. Roden E. E., Lovley D. R. 1993; Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans . Appl Environ Microbiol 59:734–742
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Sekiguchi Y., Kamagata Y., Syutsubo K., Ohashi A., Harada H., Nakamura K. 1998; Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144:2655–2665 [CrossRef]
    [Google Scholar]
  30. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. 1999; Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in methophilic and thermophilic sludge granules. Appl Environ Microbiol 65:1280–1288
    [Google Scholar]
  31. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. 2000; Syntrophothermus lipocalidus gen. nov., sp. nov. a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50:771–779 [CrossRef]
    [Google Scholar]
  32. Sekiguchi Y., Takahashi H., Kamagata Y., Ohashi A., Harada H. 2001; In situ detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67:5740–5749 [CrossRef]
    [Google Scholar]
  33. Shintani T., Liu W. T., Hanada S., Kamagata Y., Miyaoka S., Suzuki T., Nakamura K. 2000; Micropruina glycogenica gen. nov. sp. nov. a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50:201–207 [CrossRef]
    [Google Scholar]
  34. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  35. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  36. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch Microbiol 129:395–400 [CrossRef]
    [Google Scholar]
  37. Yamamoto H., Hiraishi A., Kato K., Chiura H. X., Maki Y., Shimizu A. 1998; Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64:1680–1687
    [Google Scholar]
  38. Zhang H., Hanada S., Shigematsu T., Shibuya K., Kamagata Y., Kanagawa T., Kurane R. 2000; Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int J Syst Evol Microbiol 50:743–749 [CrossRef]
    [Google Scholar]
  39. Zhang H., Sekiguchi Y., Hanada S., Hugenholtz P., Kim H., Kamagata Y., Nakamura K. 2003; Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative E. aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 531155–1163 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02699-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02699-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error