1887

Abstract

The taxonomic position of members of the complex has been the subject of intensive investigation and, in some aspects confusion, in recent years as a result of varying approaches to genetic data interpretation. Currently, the former species and are grouped together as subsp. . They differ greatly, however, as the former has a functional (41) gene that confers inducible resistance to macrolides, the primary therapeutic antimicrobials for , while in the former the (41) gene is non-functional. Furthermore, previous whole genome studies of the group support the separation of and . To shed further light on the population structure of , 43 strains and three genomes retrieved from GenBank were subjected to pairwise comparisons using three computational approaches: verage ucleotide dentity, enome to enome istance and single nucleotide polymorphism analysis. The three methods produced overlapping results, each demonstrating three clusters of strains corresponding to the same number of taxonomic entities. The distances were insufficient to warrant distinction at the species level, but met the criteria for differentiation at the subspecies level. Based on prior (41)-related phenotypic data and current genomic data, we conclude that the species encompasses, in adjunct to the presently recognized subspecies subsp. and subsp. , a third subspecies for which we suggest the name subsp. comb. nov. (type strain CCUG 48898=CIP 108297=DSM 45103=KCTC 19086).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001376
2016-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/11/4471.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001376&mimeType=html&fmt=ahah

References

  1. Adékambi T., Reynaud-Gaubert M., Greub G., Gevaudan M. J., La Scola B., Raoult D., Drancourt M. 2004; Amoebal coculture of ‘Mycobacterium massiliense' sp. nov. from the sputum of a patient with hemoptoic pneumonia. J Clin Microbiol 42:5493–5501 [View Article][PubMed]
    [Google Scholar]
  2. Adékambi T., Berger P., Raoult D., Drancourt M. 2006a; rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol 56:133–143 [View Article]
    [Google Scholar]
  3. Adékambi T., Reynaud-Gaubert M., Greub G., Gevaudan M. J., La Scola B., Raoult D., Drancourt M. 2006b; Mycobacterium massiliense sp. nov. In: List of new names and new combinations previously effectively, but not validly, published. List no. 111. Int J Syst Evol Microbiol 56:2025–2027 [CrossRef]
    [Google Scholar]
  4. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al. 2012; spades: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477 [View Article][PubMed]
    [Google Scholar]
  5. Bastian S., Veziris N., Roux A. L., Brossier F., Gaillard J. L., Jarlier V., Cambau E. 2011; Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob Agents Chemother 55:775–781 [View Article][PubMed]
    [Google Scholar]
  6. Blom J., Jakobi T., Doppmeier D., Jaenicke S., Kalinowski J., Stoye J., Goesmann A. 2011; Exact and complete short-read alignment to microbial genomes using graphics processing unit programming. Bioinformatics 27:1351–1358 [View Article][PubMed]
    [Google Scholar]
  7. Brown-Elliott B. A., Vasireddy S., Vasireddy R., Iakhiaeva E., Howard S. T., Nash K., Parodi N., Strong A., Gee M. et al. 2015; Utility of sequencing the erm(41) gene in isolates of Mycobacterium abscessus subsp. abscessus with low and intermediate clarithromycin MICs. J Clin Microbiol 53:1211–1215 [View Article][PubMed]
    [Google Scholar]
  8. Bryant J. M., Grogono D. M., Greaves D., Foweraker J., Roddick I., Inns T., Reacher M., Haworth C. S., Curran M. D. et al. 2013; Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet 381:1551–1560 [View Article][PubMed]
    [Google Scholar]
  9. Cho Y. J., Yi H., Chun J., Cho S. N., Daley C. L., Koh W. J., Shin S. J. 2013; The genome sequence of ‘Mycobacterium massiliense' strain CIP 108297 suggests the independent taxonomic status of the Mycobacterium abscessus complex at the subspecies level. PLoS One 8:e81560 [View Article][PubMed]
    [Google Scholar]
  10. CLSI 2013; Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aer1bic Actinomycetes; Approved Standard—Second Edition. M24–A2 Wayne, PA: N.C.C.L.S;
  11. Davidson R. M., Hasan N. A., Reynolds P. R., Totten S., Garcia B., Levin A., Ramamoorthy P., Heifets L., Daley C. L. et al. 2014; Genome sequencing of Mycobacterium abscessus isolates from patients in the united states and comparisons to globally diverse clinical strains. J Clin Microbiol 52:3573–3582 [View Article][PubMed]
    [Google Scholar]
  12. Griffith D. E., Aksamit T., Brown-Elliott B. A., Catanzaro A., Daley C., Gordin F., Holland S. M., Horsburgh R., Huitt G. et al. 2007; An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175:367–416 [View Article][PubMed]
    [Google Scholar]
  13. Gurevich A., Saveliev V., Vyahhi N., Tesler G. 2013; QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075 [View Article][PubMed]
    [Google Scholar]
  14. Kim H. Y., Kim B. J., Kook Y., Yun Y. J., Shin J. H., Kim B. J., Kook Y. H. 2010; Mycobacterium massiliense is differentiated from Mycobacterium abscessus and Mycobacterium bolletii by erythromycin ribosome methyltransferase gene (erm) and clarithromycin susceptibility patterns. Microbiol Immunol 54:347–353 [View Article][PubMed]
    [Google Scholar]
  15. Kim M., Oh H. S., Park S. C., Chun J. 2014; Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351 [View Article][PubMed]
    [Google Scholar]
  16. Koh W. J., Jeon K., Lee N. Y., Kim B. J., Kook Y. H., Lee S. H., Park Y. K., Kim C. K., Shin S. J. et al. 2011; Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med 183:405–410 [View Article][PubMed]
    [Google Scholar]
  17. Konstantinidis K. T., Tiedje J. M. 2005; Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 102:2567–2572 [View Article][PubMed]
    [Google Scholar]
  18. Kubica G. P., Baess I., Gordon R. E., Jenkins P. A., Kwapinski J. B., McDurmont C., Pattyn S. R., Saito H., Silcox V. et al. 1972; A co-operative numerical analysis of rapidly growing mycobacteria. J Gen Microbiol 73:55–70 [View Article][PubMed]
    [Google Scholar]
  19. Kusunoki S., Ezaki T. 1992; Proposal of Mycobacterium peregrinum sp. nov., nom. rev., and elevation of Mycobacterium chelonae subsp. abscessus (Kubica et al.) to species status: Mycobacterium abscessus comb. nov. Int J Syst Bacteriol 42:240–245 [View Article][PubMed]
    [Google Scholar]
  20. Leao S. C., Tortoli E., Viana-Niero C., Ueki S. Y., Lima K. V., Lopes M. L., Yubero J., Menendez M. C., Garcia M. J. 2009; Characterization of mycobacteria from a major Brazilian outbreak suggests that revision of the taxonomic status of members of the Mycobacterium chelonae-M. abscessus group is needed. J Clin Microbiol 47:2691–2698 [View Article][PubMed]
    [Google Scholar]
  21. Leao S. C., Tortoli E., Euzéby J. P., Garcia M. J. 2011; Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. and emended description of Mycobacterium abscessus. Int J Syst Evol Microbiol 61:2311–2313 [View Article][PubMed]
    [Google Scholar]
  22. Lee I., Kim Y. O., Park S. C., Chun J. 2016; OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol (Epub ahead of print)
    [Google Scholar]
  23. Macheras E., Roux A. L., Bastian S., Leão S. C., Palaci M., Sivadon-Tardy V., Gutierrez C., Richter E., Rüsch-Gerdes S. et al. 2011; Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains. J Clin Microbiol 49:491–499 [View Article][PubMed]
    [Google Scholar]
  24. McNabb A., Eisler D., Adie K., Amos M., Rodrigues M., Stephens G., Black W. A., Isaac-Renton J. 2004; Assessment of partial sequencing of the 65-kilodalton heat shock protein gene (hsp65) for routine identification of Mycobacterium species isolated from clinical sources. J Clin Microbiol 42:3000–3011 [View Article][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60 [View Article][PubMed]
    [Google Scholar]
  26. Moore M., Frerichs J. B. 1953; An unusual acid-fast infection of the knee with subcutaneous, abscess-like lesions of the gluteal region. J Invest Dermatol 20:133–169 [View Article]
    [Google Scholar]
  27. Nash K. A., Andini N., Zhang Y., Brown-Elliott B. A., Wallace R. J. 2006; Intrinsic macrolide resistance in rapidly growing mycobacteria. Antimicrob Agents Chemother 50:3476–3478 [View Article][PubMed]
    [Google Scholar]
  28. Nash K. A., Brown-Elliott B. A., Wallace R. J. 2009; A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother 53:1367–1376 [View Article][PubMed]
    [Google Scholar]
  29. NCCLS 2003 Susceptibility Testing for Mycobacteria, Nocardiae and Other Aerobic Actinomycetes; Approved Standard M24-A Wayne, PA: NCCLS;
    [Google Scholar]
  30. Sassi M., Drancourt M. 2014; Genome analysis reveals three genomospecies in Mycobacterium abscessus. BMC Genomics 15:359 [View Article][PubMed]
    [Google Scholar]
  31. Seemann T. 2014; prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  32. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  33. Tan J. L., Ngeow Y. F., Choo S. W. 2015; Support from phylogenomic networks and subspecies signatures for separation of mycobacterium massiliense from mycobacterium bolletii. J Clin Microbiol 53:3042–3046 [View Article][PubMed]
    [Google Scholar]
  34. Tettelin H., Davidson R. M., Agrawal S., Aitken M. L., Shallom S., Hasan N. A., Strong M., de Moura V. C., De Groote M. A. et al. 2014; High-level relatedness among Mycobacterium abscessus subsp. massiliense strains from widely separated outbreaks. Emerg Infect Dis 20:364–371 [View Article][PubMed]
    [Google Scholar]
  35. Wallace R. J., Tanner D., Brennan P. J., Brown B. A. 1993; Clinical trial of clarithromycin for cutaneous (disseminated) infection due to Mycobacterium chelonae. Ann Intern Med 119:482–486 [View Article][PubMed]
    [Google Scholar]
  36. Wayne L. G., Stackebrandt E., Kandler O., Colwell R. R., Krichevsky M. I., Truper H. G., Murray R. G. E., Moore W. E. C., Grimont P. A. D. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001376
Loading
/content/journal/ijsem/10.1099/ijsem.0.001376
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error