1887

Abstract

Propionate is an abundant catabolite in nature and represents a rich potential source of carbon for the organisms that can utilize it. However, propionate and propionate-derived catabolites are also toxic to cells, so propionate catabolism can alternatively be viewed as a detoxification mechanism. In this review, we summarize recent progress made in understanding how prokaryotes catabolize propionic acid, how these pathways are regulated and how they might be exploited to develop novel antibacterial interventions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000604
2018-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/3/251.html?itemId=/content/journal/micro/10.1099/mic.0.000604&mimeType=html&fmt=ahah

References

  1. Horswill AR, Dudding AR, Escalante-Semerena JC. Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J Biol Chem 2001; 276:19094–19101 [View Article][PubMed]
    [Google Scholar]
  2. Cummings JH, Pomare EW, Branch WJ, Naylor CP, MacFarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987; 28:1221–1227 [View Article][PubMed]
    [Google Scholar]
  3. Limenitakis J, Oppenheim RD, Creek DJ, Foth BJ, Barrett MP et al. The 2-methylcitrate cycle is implicated in the detoxification of propionate in Toxoplasma gondii. Mol Microbiol 2013; 87:894–908 [View Article][PubMed]
    [Google Scholar]
  4. Tabuchi T, Serizawa N, Uchiyama H. A novel pathway for the partial oxidation of propionyl-CoA to pyruvate via seven-carbon tricarboxylic acids in yeasts. Agric Biol Chem 1974; 38:2571–2572 [View Article]
    [Google Scholar]
  5. Horswill AR, Escalante-Semerena JC. Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol 1999; 181:5615–5623[PubMed]
    [Google Scholar]
  6. London RE, Allen DL, Gabel SA, Derose EF. Carbon-13 nuclear magnetic resonance study of metabolism of propionate by Escherichia coli. J Bacteriol 1999; 181:3562–3570[PubMed]
    [Google Scholar]
  7. Rocco CJ, Escalante-Semerena JC. In Salmonella enterica, 2-methylcitrate blocks gluconeogenesis. J Bacteriol 2010; 192:771–778 [View Article][PubMed]
    [Google Scholar]
  8. Horswill AR, Escalante-Semerena JC. The prpE gene of Salmonella typhimurium LT2 encodes propionyl-CoA synthetase. Microbiology 1999; 145:1381–1388 [View Article][PubMed]
    [Google Scholar]
  9. Rocco CJ, Wetterhorn KM, Garvey GS, Rayment I, Escalante-Semerena JC. The PrpF protein of Shewanella oneidensis MR-1 catalyzes the isomerization of 2-methyl-cis-aconitate during the catabolism of propionate via the AcnD-dependent 2-methylcitric acid cycle. PLoS One 2017; 12:e0188130 [View Article][PubMed]
    [Google Scholar]
  10. Grimek TL, Escalante-Semerena JC. The acnD genes of Shewenella oneidensis and Vibrio cholerae encode a new Fe/S-dependent 2-methylcitrate dehydratase enzyme that requires prpF function in vivo. J Bacteriol 2004; 186:454–462 [View Article][PubMed]
    [Google Scholar]
  11. Pannekoek Y, Huis In 't Veld R, Hopman CT, Langerak AA, Speijer D et al. Molecular characterization and identification of proteins regulated by Hfq in Neisseria meningitidis. FEMS Microbiol Lett 2009; 294:216–224 [View Article][PubMed]
    [Google Scholar]
  12. Jolkver E, Emer D, Ballan S, Krämer R, Eikmanns BJ et al. Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol 2009; 191:940–948 [View Article][PubMed]
    [Google Scholar]
  13. Suvorova IA, Ravcheev DA, Gelfand MS. Regulation and evolution of malonate and propionate catabolism in proteobacteria. J Bacteriol 2012; 194:3234–3240 [View Article][PubMed]
    [Google Scholar]
  14. Horswill AR, Escalante-Semerena JC. Propionate catabolism in Salmonella typhimurium LT2: two divergently transcribed units comprise the prp locus at 8.5 centisomes, prpR encodes a member of the sigma-54 family of activators, and the prpBCDE genes constitute an operon. J Bacteriol 1997; 179:928–940 [View Article][PubMed]
    [Google Scholar]
  15. Palacios S, Escalante-Semerena JC. 2-Methylcitrate-dependent activation of the propionate catabolic operon (prpBCDE) of Salmonella enterica by the PrpR protein. Microbiology 2004; 150:3877–3887 [View Article]
    [Google Scholar]
  16. Palacios S, Escalante-Semerena JC. 2-Methylcitrate-dependent activation of the propionate catabolic operon (prpBCDE) of Salmonella enterica by the PrpR protein. Microbiology 2004; 150:3877–3887 [View Article][PubMed]
    [Google Scholar]
  17. Brune I, Brinkrolf K, Kalinowski J, Pühler A, Tauch A. The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 2005; 6:86 [View Article][PubMed]
    [Google Scholar]
  18. Plassmeier J, Persicke M, Pühler A, Sterthoff C, Rückert C et al. Molecular characterization of PrpR, the transcriptional activator of propionate catabolism in Corynebacterium glutamicum. J Biotechnol 2012; 159:1–11 [View Article][PubMed]
    [Google Scholar]
  19. Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Bacteriol 2004; 186:2798–2809 [View Article][PubMed]
    [Google Scholar]
  20. Auchter M, Cramer A, Hüser A, Rückert C, Emer D et al. RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J Biotechnol 2011; 154:126–139 [View Article][PubMed]
    [Google Scholar]
  21. Masiewicz P, Brzostek A, Wolański M, Dziadek J, Zakrzewska-Czerwińska J. A novel role of the PrpR as a transcription factor involved in the regulation of methylcitrate pathway in Mycobacterium tuberculosis. PLoS One 2012; 7:e43651 [View Article][PubMed]
    [Google Scholar]
  22. Masiewicz P, Wolański M, Brzostek A, Dziadek J, Zakrzewska-Czerwińska J. Propionate represses the dnaA gene via the methylcitrate pathway-regulating transcription factor, PrpR, in Mycobacterium tuberculosis. Antonie van leeuwenhoek 2014; 105:951–959 [View Article][PubMed]
    [Google Scholar]
  23. Palacios S, Escalante-Semerena JC. prpR, ntrA, and ihf functions are required for expression of the prpBCDE operon, encoding enzymes that catabolize propionate in Salmonella enterica serovar typhimurium LT2. J Bacteriol 2000; 182:905–910 [View Article][PubMed]
    [Google Scholar]
  24. Lee SK, Newman JD, Keasling JD. Catabolite repression of the propionate catabolic genes in Escherichia coli and Salmonella enterica: evidence for involvement of the cyclic AMP receptor protein. J Bacteriol 2005; 187:2793–2800 [View Article][PubMed]
    [Google Scholar]
  25. Catenazzi MC, Jones H, Wallace I, Clifton J, Chong JP et al. A large genomic island allows Neisseria meningitidis to utilize propionic acid, with implications for colonization of the human nasopharynx. Mol Microbiol 2014; 93:346–355 [View Article][PubMed]
    [Google Scholar]
  26. Pannekoek Y, Huis In 't Veld RA, Schipper K, Bovenkerk S, Kramer G et al. Neisseria meningitidis uses sibling small regulatory RNAs to switch from cataplerotic to anaplerotic metabolism. MBio 2017; 8:e02293-16 [View Article][PubMed]
    [Google Scholar]
  27. Heidrich N, Bauriedl S, Barquist L, Li L, Schoen C et al. The primary transcriptome of Neisseria meningitidis and its interaction with the RNA chaperone Hfq. Nucleic Acids Res 2017; 45:6147–6167 [View Article][PubMed]
    [Google Scholar]
  28. Mellin JR, McClure R, Lopez D, Green O, Reinhard B et al. Role of Hfq in iron-dependent and -independent gene regulation in Neisseria meningitidis. Microbiology 2010; 156:2316–2326 [View Article][PubMed]
    [Google Scholar]
  29. Wong GT, Bonocora RP, Schep AN, Beeler SM, Lee Fong AJ et al. Genome-wide transcriptional response to varying RpoS levels in Escherichia coli K-12. J Bacteriol 2017; 199:e00755-16 [View Article][PubMed]
    [Google Scholar]
  30. Lago M, Monteil V, Douche T, Guglielmini J, Criscuolo A et al. Proteome remodelling by the stress sigma factor RpoS/σS in Salmonella: identification of small proteins and evidence for post-transcriptional regulation. Sci Rep 2017; 7:2127 [View Article][PubMed]
    [Google Scholar]
  31. Simonte FM, Dötsch A, Galego L, Arraiano C, Gescher J. Investigation on the anaerobic propionate degradation by Escherichia coli K12. Mol Microbiol 2017; 103:55–66 [View Article][PubMed]
    [Google Scholar]
  32. Hayden JD, Brown LR, Gunawardena HP, Perkowski EF, Chen X et al. Reversible acetylation regulates acetate and propionate metabolism in Mycobacterium smegmatis. Microbiology 2013; 159:1986–1999 [View Article][PubMed]
    [Google Scholar]
  33. Nambi S, Gupta K, Bhattacharyya M, Ramakrishnan P, Ravikumar V et al. Cyclic AMP-dependent protein lysine acylation in mycobacteria regulates fatty acid and propionate metabolism. J Biol Chem 2013; 288:14114–14124 [View Article][PubMed]
    [Google Scholar]
  34. Munoz-Elias EJ, Upton AM, Cherian J, McKinney JD. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 2006; 60:1109–1122 [View Article]
    [Google Scholar]
  35. Savvi S, Warner DF, Kana BD, McKinney JD, Mizrahi V et al. Functional characterization of a vitamin B12-dependent methylmalonyl pathway in Mycobacterium tuberculosis: implications for propionate metabolism during growth on fatty acids. J Bacteriol 2008; 190:3886–3895 [View Article][PubMed]
    [Google Scholar]
  36. Brock M. Generation and phenotypic characterization of Aspergillus nidulans methylisocitrate lyase deletion mutants: methylisocitrate inhibits growth and conidiation. Appl Environ Microbiol 2005; 71:5465–5475 [View Article][PubMed]
    [Google Scholar]
  37. Roe AJ, O'Byrne C, McLaggan D, Booth IR. Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 2002; 148:2215–2222 [View Article][PubMed]
    [Google Scholar]
  38. Hüser AT, Becker A, Brune I, Dondrup M, Kalinowski J et al. Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source. J Biotechnol 2003; 106:269–286 [View Article][PubMed]
    [Google Scholar]
  39. Man WJ, Li Y, O'Connor CD, Wilton DC. The binding of propionyl-CoA and carboxymethyl-CoA to Escherichia coli citrate synthase. Biochim Biophys Acta 1995; 1250:69–75 [View Article][PubMed]
    [Google Scholar]
  40. Maruyama K, Kitamura H. Mechanisms of growth inhibition by propionate and restoration of the growth by sodium bicarbonate or acetate in Rhodopseudomonas sphaeroides S. J Biochem 1985; 98:819–824 [View Article][PubMed]
    [Google Scholar]
  41. Brock M, Buckel W. On the mechanism of action of the antifungal agent propionate. Eur J Biochem 2004; 271:3227–3241 [View Article][PubMed]
    [Google Scholar]
  42. Reddick JJ, Sirkisoon S, Dahal RA, Hardesty G, Hage NE et al. First biochemical characterization of a methylcitric acid cycle from Bacillus subtilis strain 168. Biochemistry 2017; 56:5698–5711 [View Article][PubMed]
    [Google Scholar]
  43. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 2009; 5:e1000344 [View Article][PubMed]
    [Google Scholar]
  44. Sahl JW, Morris CR, Emberger J, Fraser CM, Ochieng JB et al. Defining the phylogenomics of Shigella species: a pathway to diagnostics. J Clin Microbiol 2015; 53:951–960 [View Article][PubMed]
    [Google Scholar]
  45. Méric G, Yahara K, Mageiros L, Pascoe B, Maiden MC et al. A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic Campylobacter. PLoS One 2014; 9:e92798 [View Article][PubMed]
    [Google Scholar]
  46. Wagley S, Newcombe J, Laing E, Yusuf E, Sambles CM et al. Differences in carbon source utilisation distinguish Campylobacter jejuni from Campylobacter coli. BMC Microbiol 2014; 14:262 [View Article][PubMed]
    [Google Scholar]
  47. Rocco CJ, Escalante-Semerena JC. In Salmonella enterica, 2-methylcitrate blocks gluconeogenesis. J Bacteriol 2010; 192:771–778 [View Article][PubMed]
    [Google Scholar]
  48. Eoh H, Rhee KY. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc Natl Acad Sci USA 2014; 111:4976–4981 [View Article][PubMed]
    [Google Scholar]
  49. Digianantonio KM, Korolev M, Hecht MH. A non-natural protein rescues cells deleted for a key enzyme in central metabolism. ACS Synth Biol 2017; 6:694–700 [View Article][PubMed]
    [Google Scholar]
  50. Lee SA, Gallagher LA, Thongdee M, Staudinger BJ, Lippman S et al. General and condition-specific essential functions of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2015; 112:5189–5194 [View Article][PubMed]
    [Google Scholar]
  51. Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI et al. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog 2009; 5:e1000545 [View Article][PubMed]
    [Google Scholar]
  52. Lee W, Vanderven BC, Fahey RJ, Russell DG. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem 2013; 288:6788–6800 [View Article][PubMed]
    [Google Scholar]
  53. Martinot AJ, Farrow M, Bai L, Layre E, Cheng TY et al. Mycobacterial metabolic syndrome: LprG and Rv1410 regulate triacylglyceride levels, growth rate and virulence in Mycobacterium tuberculosis. PLoS Pathog 2016; 12:e1005351 [View Article][PubMed]
    [Google Scholar]
  54. Singhal A, Arora G, Virmani R, Kundu P, Khanna T et al. Systematic analysis of mycobacterial acylation reveals first example of acylation-mediated regulation of enzyme activity of a bacterial phosphatase. J Biol Chem 2015; 290:26218–26234 [View Article][PubMed]
    [Google Scholar]
  55. Nazarova EV, Montague CR, La T, Wilburn KM, Sukumar N et al. Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. elife 2017; 6:e26969 [View Article][PubMed]
    [Google Scholar]
  56. Zimmermann M, Kogadeeva M, Gengenbacher M, McEwen G, Mollenkopf HJ et al. Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Mycobacterium tuberculosis during Early Macrophage Infection. mSystems 2017; 2:e00057-17 [View Article][PubMed]
    [Google Scholar]
  57. Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 2008; 105:4376–4380 [View Article][PubMed]
    [Google Scholar]
  58. Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, McKinney JD et al. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 2012; 19:218–227 [View Article][PubMed]
    [Google Scholar]
  59. Muñoz-Elías EJ, Upton AM, Cherian J, McKinney JD. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 2006; 60:1109–1122 [View Article][PubMed]
    [Google Scholar]
  60. Vanderven BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB et al. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium's metabolism is constrained by the intracellular environment. PLoS Pathog 2015; 11:e1004679 [View Article][PubMed]
    [Google Scholar]
  61. Yang X, Nesbitt NM, Dubnau E, Smith I, Sampson NS. Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. Biochemistry 2009; 48:3819–3821 [View Article][PubMed]
    [Google Scholar]
  62. Hung CC, Garner CD, Slauch JM, Dwyer ZW, Lawhon SD et al. The intestinal fatty acid propionate inhibits Salmonella invasion through the post-translational control of HilD. Mol Microbiol 2013; 87:1045–1060 [View Article][PubMed]
    [Google Scholar]
  63. van Immerseel F, de Buck J, Pasmans F, Velge P, Bottreau E et al. Invasion of Salmonella enteritidis in avian intestinal epithelial cells in vitro is influenced by short-chain fatty acids. Int J Food Microbiol 2003; 85:237–248 [View Article][PubMed]
    [Google Scholar]
  64. Argüello H, Carvajal A, Costillas S, Rubio P. Effect of the addition of organic acids in drinking water or feed during part of the finishing period on the prevalence of Salmonella in finishing pigs. Foodborne Pathog Dis 2013; 10:842–849 [View Article][PubMed]
    [Google Scholar]
  65. Gart EV, Suchodolski JS, Welsh TH, Alaniz RC, Randel RD et al. Salmonella Typhimurium and multidirectional communication in the gut. Front Microbiol 2016; 7:1827 [View Article][PubMed]
    [Google Scholar]
  66. Ciarlo E, Heinonen T, Herderschee J, Fenwick C, Mombelli M et al. Impact of the microbial derived short chain fatty acid propionate on host susceptibility to bacterial and fungal infections in vivo. Sci Rep 2016; 6:srep37944 [View Article][PubMed]
    [Google Scholar]
  67. Brook I. The role of anaerobic bacteria in upper respiratory tract and other head and neck infections. Curr Infect Dis Rep 2007; 9:208–217 [View Article][PubMed]
    [Google Scholar]
  68. Flynn JM, Niccum D, Dunitz JM, Hunter RC. Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease. PLoS Pathog 2016; 12:e1005846 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000604
Loading
/content/journal/micro/10.1099/mic.0.000604
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error