1887

Abstract

Inducible promoter systems are powerful tools for studying gene function in prokaryotes but have never been shown to function in mollicutes. In this study we evaluated the efficacy of the tetracycline-inducible promoter P from in controlling gene expression in two mollicutes, the plant pathogen and the animal pathogen . An plasmid carrying the spiralin gene under the control of the tetracycline-inducible promoter and the TetR repressor gene under the control of a constitutive spiroplasmal promoter was introduced into the spiralin-less mutant GII3-9a3. In the absence of tetracycline, expression of TetR almost completely abolished expression of spiralin from the promoter. Adding tetracycline (>50 ng ml) to the medium induced high-level expression of spiralin. Interestingly, inducible expression of spiralin was also detected : in -infected leafhoppers fed on tetracycline-containing medium and in -infected plants watered with tetracycline. A similar construct was introduced into the chromosome through transposition. Tetracycline-induced expression of spiralin proved the TetR-P system to be functional in the ruminant pathogen, suggesting that this tetracycline-inducible promoter system might be of general use in mollicutes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.034074-0
2010-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/198.html?itemId=/content/journal/micro/10.1099/mic.0.034074-0&mimeType=html&fmt=ahah

References

  1. André A., Maccheroni W., Doignon F., Garnier M., Renaudin J. 2003; Glucose and trehalose PTS permeases of Spiroplasma citri probably share a single IIA domain, enabling the spiroplasma to adapt quickly to carbohydrate changes in its environment. Microbiology 149:2687–2696
    [Google Scholar]
  2. André A., Maucourt M., Moing A., Rolin D., Renaudin J. 2005; Sugar import and phytopathogenicity of Spiroplasma citri: glucose and fructose play distinct roles. Mol Plant Microbe Interact 18:33–42
    [Google Scholar]
  3. Bae T., Schneewind O. 2006; Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55:58–63
    [Google Scholar]
  4. Bergonier D., Berthelot X., Poumarat F. 1997; Contagious agalactia of small ruminants: current knowledge concerning epidemiology, diagnosis and control. Rev Sci Tech 16:848–873
    [Google Scholar]
  5. Blokpoel M. C., Murphy H. N., O'Toole R., Wiles S., Runn E. S., Stewart G. R., Young D. B., Robertson B. D. 2005; Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res 33:e22
    [Google Scholar]
  6. Breton M., Duret S., Arricau-Bouvery N., Béven L., Renaudin J. 2008; Characterizing the replication and stability regions of Spiroplasma citri plasmids identifies a novel replication protein and expands the genetic toolbox for plant-pathogenic spiroplasmas. Microbiology 154:3232–3244
    [Google Scholar]
  7. Carroll P., Brown A. C., Hartridge A. R., Parish T. 2007; Expression of Mycobacterium tuberculosis Rv1991c using an arabinose-inducible promoter demonstrates its role as a toxin. FEMS Microbiol Lett 274:73–82
    [Google Scholar]
  8. Chopra-Dewasthaly R., Marenda M., Rosengarten R. A., Jechlinger W., Citti C. 2005a; Construction of the first shuttle vectors for gene cloning and homologous recombination in Mycoplasma agalactiae. FEMS Microbiol Lett 253:89–94
    [Google Scholar]
  9. Chopra-Dewasthaly R., Zimmermann M., Rosengarten R., Citti C. 2005b; First steps towards the genetic manipulation of Mycoplasma agalactiae and Mycoplasma bovis using the transposon Tn 4001mod. Int J Med Microbiol 294:447–453
    [Google Scholar]
  10. Cordova C. M., Lartigue C., Sirand-Pugnet P., Renaudin J., Cunha R. A., Blanchard A. 2002; Identification of the origin of replication of the Mycoplasma pulmonis chromosome and its use in oriC replicative plasmids. J Bacteriol 184:5426–5435
    [Google Scholar]
  11. Corrigan R. M., Foster T. J. 2009; An improved tetracycline-inducible expression vector for Staphylococcus aureus. Plasmid 61:126–129
    [Google Scholar]
  12. Corrigan R. M., Rigby D., Handley P., Foster T. J. 2007; The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 153:2435–2446
    [Google Scholar]
  13. Duret S., Danet J. L., Garnier M., Renaudin J. 1999; Gene disruption through homologous recombination in Spiroplasma citri: an scm1-disrupted motility mutant is pathogenic. J Bacteriol 181:7449–7456
    [Google Scholar]
  14. Duret S., Berho N., Danet J. L., Garnier M., Renaudin J. 2003; Spiralin is not essential for helicity, motility, or pathogenicity but is required for efficient transmission of Spiroplasma citri by its leafhopper vector Circulifer haematoceps. Appl Environ Microbiol 69:6225–6234
    [Google Scholar]
  15. Duret S., André A., Renaudin J. 2005; Specific gene targeting in Spiroplasma citri: improved vectors and production of unmarked mutations using site-specific recombination. Microbiology 151:2793–2803
    [Google Scholar]
  16. Foissac X., Danet J. L., Saillard C., Whitcomb R. F., Bové J. M. 1996; Experimental infections of plant by spiroplasmas. In Molecular and Diagnostic Procedures in Mycoplasmology vol. 2 pp 385–389 Edited by Razin S., Tully J. G. New York: Academic Press;
    [Google Scholar]
  17. Foissac X., Danet J. L., Saillard C., Gaurivaud P., Laigret F., Pare C., Bové J. M. 1997; Mutagenesis by insertion of Tn 4001 into the genome of Spiroplasma citri: characterization of mutants affected in plant pathogenicity and transmission to the plant by the leafhopper vector Circulifer haematoceps. Mol Plant Microbe Interact 10:454–461
    [Google Scholar]
  18. Gaurivaud P., Danet J. L., Laigret F., Garnier M., Bové J. M. 2000; Fructose utilization and phytopathogenicity of Spiroplasma citri. Mol Plant Microbe Interact 13:1145–1155
    [Google Scholar]
  19. Gaurivaud P., Laigret F., Garnier M., Bové J. M. 2001; Characterization of FruR as a putative activator of the fructose operon of Spiroplasma citri. FEMS Microbiol Lett 198:73–78
    [Google Scholar]
  20. Geissendörfer M., Hillen W. 1990; Regulated expression of heterologous genes in Bacillus subtilis using the Tn 10 encoded tet regulatory elements. Appl Microbiol Biotechnol 33:657–663
    [Google Scholar]
  21. Halbedel S., Eilers H., Jonas B., Busse J., Hecker M., Engelmann S., Stulke J. 2007; Transcription in Mycoplasma pneumoniae: analysis of the promoters of the ackA and ldh genes. J Mol Biol 371:596–607
    [Google Scholar]
  22. Jacob C., Nouzieres F., Duret S., Bové J. M., Renaudin J. 1997; Isolation, characterization, and complementation of a motility mutant of Spiroplasma citri. J Bacteriol 179:4802–4810
    [Google Scholar]
  23. Janis C., Lartigue C., Frey J., Wroblewski H., Thiaucourt F., Blanchard A., Sirand-Pugnet P. 2005; Versatile use of oriC plasmids for functional genomics of Mycoplasma capricolum subsp. capricolum. Appl Environ Microbiol 71:2888–2893
    [Google Scholar]
  24. Janis C., Bischof D., Gourgues G., Frey J., Blanchard A., Sirand-Pugnet P. 2008; Unmarked insertional mutagenesis in the bovine pathogen Mycoplasma mycoides subsp. mycoides SC: characterization of a lppQ mutant. Microbiology 154:2427–2436
    [Google Scholar]
  25. Kamionka A., Bertram R., Hillen W. 2005; Tetracycline-dependent conditional gene knockout in Bacillus subtilis. Appl Environ Microbiol 71:728–733
    [Google Scholar]
  26. Killiny N., Castroviejo M., Saillard C. 2005; Spiroplasma citri spiralin acts in vitro as a lectin binding to glycoproteins from its insect vector Circulifer haematoceps. Phytopathology 95:541–548
    [Google Scholar]
  27. Killiny N., Batailler B., Foissac X., Saillard C. 2006; Identification of a Spiroplasma citri hydrophilic protein associated with insect transmissibility. Microbiology 152:1221–1230
    [Google Scholar]
  28. Lartigue C., Duret S., Garnier M., Renaudin J. 2002; New plasmid vectors for specific gene targeting in Spiroplasma citri. Plasmid 48:149–159
    [Google Scholar]
  29. Lartigue C., Blanchard A., Renaudin J., Thiaucourt F., Sirand-Pugnet P. 2003; Host specificity of mollicutes oriC plasmids: functional analysis of replication origin. Nucleic Acids Res 31:6610–6618
    [Google Scholar]
  30. Lee S. W., Browning G. F., Markham P. F. 2008; Development of a replicable oriC plasmid for Mycoplasma gallisepticum and Mycoplasma imitans, and gene disruption through homologous recombination in M. gallisepticum. Microbiology 154:2571–2580
    [Google Scholar]
  31. Maniloff J. 2002; Phylogeny and evolution. In Molecular Biology and Pathogenicity of Mycoplasmas pp 31–43 Edited by Razin S., Herrmann R. New York: Kluwer Academic/Plenum;
    [Google Scholar]
  32. Musatovova O., Dhandayuthapani S., Baseman J. B. 2006; Transcriptional heat shock response in the smallest known self-replicating cell, Mycoplasma genitalium. J Bacteriol 188:2845–2855
    [Google Scholar]
  33. Peterson S. N., Fraser C. M. 2001; The complexity of simplicity. Genome Biol 2: COMMENT2002
    [Google Scholar]
  34. Renaudin J. 2002; Extrachromosomal elements and gene transfer. In Molecular and Pathogenicity of Mycoplasmas pp 347–370 Edited by Razin S., Herrmann R. New York: Kluwer Academic/Plenum;
    [Google Scholar]
  35. Renaudin J., Lartigue C. 2005; oriC plasmids as gene vectors for mollicutes. In Mycoplasmas: Pathogenesis, Molecular Biology, and Emerging Strategies for Control pp 3–30 Edited by Blanchard A., Browning G. Norwich, UK: Horizon Scientific Press;
    [Google Scholar]
  36. Renaudin J., Marais A., Verdin E., Duret S., Foissac X., Laigret F., Bové J. M. 1995; Integrative and free Spiroplasma citri oriC plasmids: expression of the Spiroplasma phoeniceum spiralin in Spiroplasma citri. J Bacteriol 177:2870–2877
    [Google Scholar]
  37. Rouch D. A., Byrne M. E., Kong Y. C., Skurray R. A. 1987; The aacA-aphD gentamicin and kanamycin resistance determinant of Tn 4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J Gen Microbiol 133:3039–3052
    [Google Scholar]
  38. Saglio P., Lhospital M., Laflèche D., Dupont G., Bové J. M., Tully J. G., Freundt E. A. 1973; Spiroplasma citri gen. and sp. nov.: a mycoplasma-like organism associated with stubborn disease of citrus. Int J Syst Bacteriol 23:191–204
    [Google Scholar]
  39. Singh S. K., Aminuddin S. K., Srivastava P., Singh B. R., Khan J. A. 2007; Production of phytoplasma-free plants from yellow leaf diseased Catharanthus roseus (L.) G. Don. J Plant Dis Prot 114:2–5
    [Google Scholar]
  40. Sirand-Pugnet P., Lartigue C., Marenda M., Jacob D., Barré A., Barbe V., Schenowitz C., Mangenot S., Couloux A. other authors 2007; Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial geome. PLoS Genet 3:e75
    [Google Scholar]
  41. Stamburski C., Renaudin J., Bové J. M. 1991; First step toward a virus-derived vector for gene cloning and expression in spiroplasmas, organisms which read UGA as a tryptophan codon – synthesis of chloramphenicol acetyltransferase in Spiroplasma citri. J Bacteriol 173:2225–2230
    [Google Scholar]
  42. Vignault J. C., Bové J. M., Saillard C., Vogel R., Faro A., Venegas L., Stemmer W., Aoki S., McCoy R. E. other authors 1980; Mise en culture de spiroplasmes à partir de matériel végétal et d'insectes provenant de pays circum méditerranéens et du Proche Orient. C R Acad Sci Paris 290:775–780
    [Google Scholar]
  43. Weiner J. III, Zimmerman C. U., Gohlmann H. W., Herrmann R. 2003; Transcription profiles of the bacterium Mycoplasma pneumoniae grown at different temperatures. Nucleic Acids Res 31:6306–6320
    [Google Scholar]
  44. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G. other authors 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171:6455–6467
    [Google Scholar]
  45. Whitcomb R. F. 1983; Culture media for spiroplasma. In Methods in Mycoplasmology vol. I pp 147–158 Edited by Razin S., Tully J. G. New York: Academic Press;
    [Google Scholar]
  46. Wongkaew P., Fletcher J. 2004; Sugar cane white leaf phytoplasma in tissue culture: long-term maintenance, transmission, and oxytetracycline remission. Plant Cell Rep 23:426–434
    [Google Scholar]
  47. Zhang L., Fan F., Palmer L. M., Lonetto M. A., Petit C., Voelker L. L., St John A., Bankosky B., Rosenberg M. other authors 2000; Regulated gene expression in Staphylococcus aureus for identifying conditional lethal phenotypes and antibiotic mode of action. Gene 255:297–305
    [Google Scholar]
  48. Zimmerman C. U., Herrmann R. 2005; Synthesis of a small, cysteine-rich, 29 amino acids long peptide in Mycoplasma pneumoniae. FEMS Microbiol Lett 253:315–321
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.034074-0
Loading
/content/journal/micro/10.1099/mic.0.034074-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error