1887

Abstract

Despite the enormous contributions of the bacterial paradigms and to basic and applied research, it is well known that no single organism can be a perfect representative of all other species. However, given that some bacteria are difficult, or virtually impossible, to cultivate in the laboratory, that some are recalcitrant to genetic and molecular manipulation, and that others can be extremely dangerous to manipulate, the use of model organisms will continue to play an important role in the development of basic research. In particular, model organisms are very useful for providing a better understanding of the biology of closely related species. Here, we discuss how the lifestyle, the availability of suitable and systems, and a thorough understanding of the genetics, biochemistry and physiology of the dental pathogen have greatly advanced our understanding of important areas in the field of bacteriology such as interspecies biofilms, competence development and stress responses. In this article, we provide an argument that places , an organism that evolved in close association with the human host, as a novel Gram-positive model organism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066134-0
2013-03-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/3/436.html?itemId=/content/journal/micro/10.1099/mic.0.066134-0&mimeType=html&fmt=ahah

References

  1. Abranches J., Chen Y. Y., Burne R. A. ( 2003). Characterization of Streptococcus mutans strains deficient in EIIAB Man of the sugar phosphotransferase system. Appl Environ Microbiol 69:4760–4769 [View Article][PubMed]
    [Google Scholar]
  2. Abranches J., Nascimento M. M., Zeng L., Browngardt C. M., Wen Z. T., Rivera M. F., Burne R. A. ( 2008). CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans . J Bacteriol 190:2340–2349 [View Article][PubMed]
    [Google Scholar]
  3. Abranches J., Martinez A. R., Kajfasz J. K., Chávez V., Garsin D. A., Lemos J. A. ( 2009). The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis . J Bacteriol 191:2248–2256 [View Article][PubMed]
    [Google Scholar]
  4. Abranches J., Miller J. H., Martinez A. R., Simpson-Haidaris P. J., Burne R. A., Lemos J. A. ( 2011). The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun 79:2277–2284 [View Article][PubMed]
    [Google Scholar]
  5. Ahn S. J., Wen Z. T., Burne R. A. ( 2006). Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect Immun 74:1631–1642 [View Article][PubMed]
    [Google Scholar]
  6. Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S. & other authors ( 2002). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439 [View Article][PubMed]
    [Google Scholar]
  7. Ambatipudi K. S., Hagen F. K., Delahunty C. M., Han X., Shafi R., Hryhorenko J., Gregoire S., Marquis R. E., Melvin J. E. & other authors ( 2010). Human common salivary protein 1 (CSP-1) promotes binding of Streptococcus mutans to experimental salivary pellicle and glucans formed on hydroxyapatite surface. J Proteome Res 9:6605–6614 [View Article][PubMed]
    [Google Scholar]
  8. Atkinson G. C., Tenson T., Hauryliuk V. ( 2011). The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life. PLoS ONE 6:e23479 [View Article][PubMed]
    [Google Scholar]
  9. Atlagic D., Kiliç A. O., Tao L. ( 2006). Unmarked gene deletion mutagenesis of gtfB and gtfC in Streptococcus mutans using a targeted hit-and-run strategy with a thermosensitive plasmid. Oral Microbiol Immunol 21:132–135 [View Article][PubMed]
    [Google Scholar]
  10. Bahn S. L., Goveia G., Bitterman P., Bahn A. N. ( 1978). Experimental endocarditis induced by dental manipulation and oral streptococci. Oral Surg Oral Med Oral Pathol 45:549–559 [View Article][PubMed]
    [Google Scholar]
  11. Banas J. A., Vickerman M. M. ( 2003). Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med 14:89–99 [View Article][PubMed]
    [Google Scholar]
  12. Banerjee A., Biswas I. ( 2008). Markerless multiple-gene-deletion system for Streptococcus mutans . Appl Environ Microbiol 74:2037–2042 [View Article][PubMed]
    [Google Scholar]
  13. Battesti A., Bouveret E. ( 2009). Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction. J Bacteriol 191:616–624 [View Article][PubMed]
    [Google Scholar]
  14. Becker M. R., Paster B. J., Leys E. J., Moeschberger M. L., Kenyon S. G., Galvin J. L., Boches S. K., Dewhirst F. E., Griffen A. L. ( 2002). Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40:1001–1009 [View Article][PubMed]
    [Google Scholar]
  15. Belli W. A., Marquis R. E. ( 1991). Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol 57:1134–1138[PubMed]
    [Google Scholar]
  16. Bender G. R., Sutton S. V., Marquis R. E. ( 1986). Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun 53:331–338[PubMed]
    [Google Scholar]
  17. Bowen W. H., Koo H. ( 2011). Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45:69–86 [View Article][PubMed]
    [Google Scholar]
  18. Bradshaw D. J., Marsh P. D. ( 1998). Analysis of pH-driven disruption of oral microbial communities in vitro . Caries Res 32:456–462 [View Article][PubMed]
    [Google Scholar]
  19. Bradshaw D. J., Marsh P. D. ( 1999). Use of continuous flow techniques in modeling dental plaque biofilms. Methods Enzymol 310:279–296 [View Article][PubMed]
    [Google Scholar]
  20. Burne R. A. ( 1998). Oral streptococci... products of their environment. J Dent Res 77:445–452 [View Article][PubMed]
    [Google Scholar]
  21. Burne R. A., Chen Y. Y., Wexler D. L., Kuramitsu H., Bowen W. H. ( 1996). Cariogenicity of Streptococcus mutans strains with defects in fructan metabolism assessed in a program-fed specific-pathogen-free rat model. J Dent Res 75:1572–1577 [View Article][PubMed]
    [Google Scholar]
  22. Carlsson J. ( 1983). Regulation of sugar metabolism in relation to feast-and-famine existence of plaque. Cariology Today Guggenheim B. Basel: Karger;
    [Google Scholar]
  23. Catalán M. A., Scott-Anne K., Klein M. I., Koo H., Bowen W. H., Melvin J. E. ( 2011). Elevated incidence of dental caries in a mouse model of cystic fibrosis. PLoS ONE 6:e16549 [View Article][PubMed]
    [Google Scholar]
  24. Clarke J. K. ( 1924). On the bacterial factor in the etiology of dental caries. Br J Exp Pathol 5:141–147
    [Google Scholar]
  25. Claverys J. P., Havarstein L. S. ( 2002). Extracellular-peptide control of competence for genetic transformation in Streptococcus pneumoniae . Front Biosci 7:d1798–d1814 [View Article][PubMed]
    [Google Scholar]
  26. Cornejo O. E., Lefebure T., Bitar P. D., Lang P., Richards V. P., Eilertson K., Do T., Beighton D., Zeng L. & other authors ( 2012). Evolutionary and population genomics of the cavity causing bacteria Streptococcus mutans . Mol Biol Evol [View Article][PubMed]
    [Google Scholar]
  27. Culp D. J., Quivey R. Q., Bowen W. H., Fallon M. A., Pearson S. K., Faustoferri R. ( 2005). A mouse caries model and evaluation of Aqp5−/− knockout mice. Caries Res 39:448–454 [View Article][PubMed]
    [Google Scholar]
  28. Das B., Pal R. R., Bag S., Bhadra R. K. ( 2009). Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene. Mol Microbiol 72:380–398 [View Article][PubMed]
    [Google Scholar]
  29. Fitzgerald R. J., Keyes P. H. ( 1960). Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J Am Dent Assoc 61:9–19[PubMed] [CrossRef]
    [Google Scholar]
  30. Fontaine L., Boutry C., de Frahan M. H., Delplace B., Fremaux C., Horvath P., Boyaval P., Hols P. ( 2010). A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius . J Bacteriol 192:1444–1454 [View Article][PubMed]
    [Google Scholar]
  31. Fozo E. M., Quivey R. G. Jr ( 2004). The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol 186:4152–4158 [View Article][PubMed]
    [Google Scholar]
  32. Fozo E. M., Scott-Anne K., Koo H., Quivey R. G. Jr ( 2007). Role of unsaturated fatty acid biosynthesis in virulence of Streptococcus mutans . Infect Immun 75:1537–1539 [View Article][PubMed]
    [Google Scholar]
  33. Funes S., Hasona A., Bauerschmitt H., Grubbauer C., Kauff F., Collins R., Crowley P. J., Palmer S. R., Brady L. J., Herrmann J. M. ( 2009). Independent gene duplications of the YidC/Oxa/Alb3 family enabled a specialized cotranslational function. Proc Natl Acad Sci U S A 106:6656–6661 [View Article][PubMed]
    [Google Scholar]
  34. Gibbons R. J. ( 1989). Bacterial adhesion to oral tissues: a model for infectious diseases. J Dent Res 68:750–760 [View Article][PubMed]
    [Google Scholar]
  35. Gonzalez K., Faustoferri R. C., Quivey R. G. Jr ( 2012). Role of DNA base excision repair in the mutability and virulence of Streptococcus mutans . Mol Microbiol 85:361–377 [View Article][PubMed]
    [Google Scholar]
  36. Gregoire S., Xiao J., Silva B. B., Gonzalez I., Agidi P. S., Klein M. I., Ambatipudi K. S., Rosalen P. L., Bauserman R. & other authors ( 2011). Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl Environ Microbiol 77:6357–6367 [View Article][PubMed]
    [Google Scholar]
  37. Gross E. L., Leys E. J., Gasparovich S. R., Firestone N. D., Schwartzbaum J. A., Janies D. A., Asnani K., Griffen A. L. ( 2010). Bacterial 16S sequence analysis of severe caries in young permanent teeth. J Clin Microbiol 48:4121–4128 [View Article][PubMed]
    [Google Scholar]
  38. Gross E. L., Beall C. J., Kutsch S. R., Firestone N. D., Leys E. J., Griffen A. L. ( 2012). Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS ONE 7:e47722 [View Article][PubMed]
    [Google Scholar]
  39. Hasona A., Crowley P. J., Levesque C. M., Mair R. W., Cvitkovitch D. G., Bleiweis A. S., Brady L. J. ( 2005). Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proc Natl Acad Sci U S A 102:17466–17471 [View Article][PubMed]
    [Google Scholar]
  40. Jenkinson H. F. ( 2011). Beyond the oral microbiome. Environ Microbiol 13:3077–3087 [View Article][PubMed]
    [Google Scholar]
  41. Jung C. J., Zheng Q. H., Shieh Y. H., Lin C. S., Chia J. S. ( 2009). Streptococcus mutans autolysin AtlA is a fibronectin-binding protein and contributes to bacterial survival in the bloodstream and virulence for infective endocarditis. Mol Microbiol 74:888–902 [View Article][PubMed]
    [Google Scholar]
  42. Kajfasz J. K., Rivera-Ramos I., Abranches J., Martinez A. R., Rosalen P. L., Derr A. M., Quivey R. G., Lemos J. A. ( 2010). Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans . J Bacteriol 192:2546–2556 [View Article][PubMed]
    [Google Scholar]
  43. Keenan R. J., Freymann D. M., Stroud R. M., Walter P. ( 2001). The signal recognition particle. Annu Rev Biochem 70:755–775 [View Article][PubMed]
    [Google Scholar]
  44. Klein M. I., Xiao J., Lu B., Delahunty C. M., Yates J. R. III, Koo H. ( 2012). Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics. PLoS ONE 7:e45795 [View Article][PubMed]
    [Google Scholar]
  45. Koo H., Schobel B., Scott-Anne K., Watson G., Bowen W. H., Cury J. A., Rosalen P. L., Park Y. K. ( 2005). Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries. J Dent Res 84:1016–1020 [View Article][PubMed]
    [Google Scholar]
  46. Koo H., Xiao J., Klein M. I., Jeon J. G. ( 2010). Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol 192:3024–3032 [View Article][PubMed]
    [Google Scholar]
  47. Kreth J., Merritt J., Shi W., Qi F. ( 2005). Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol 57:392–404 [View Article][PubMed]
    [Google Scholar]
  48. Kreth J., Zhang Y., Herzberg M. C. ( 2008). Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans . J Bacteriol 190:4632–4640 [View Article][PubMed]
    [Google Scholar]
  49. Kuramitsu H. K., He X., Lux R., Anderson M. H., Shi W. ( 2007). Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71:653–670 [View Article][PubMed]
    [Google Scholar]
  50. Lau P. C., Sung C. K., Lee J. H., Morrison D. A., Cvitkovitch D. G. ( 2002). PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods 49:193–205 [View Article][PubMed]
    [Google Scholar]
  51. Lemos J. A., Burne R. A. ( 2008). A model of efficiency: stress tolerance by Streptococcus mutans . Microbiology 154:3247–3255 [View Article][PubMed]
    [Google Scholar]
  52. Lemos J. A., Brown T. A. Jr, Burne R. A. ( 2004). Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans . Infect Immun 72:1431–1440 [View Article][PubMed]
    [Google Scholar]
  53. Lemos J. A., Abranches J., Burne R. A. ( 2005). Responses of cariogenic streptococci to environmental stresses. Curr Issues Mol Biol 7:95–107[PubMed]
    [Google Scholar]
  54. Lemos J. A., Lin V. K., Nascimento M. M., Abranches J., Burne R. A. ( 2007a). Three gene products govern (p)ppGpp production by Streptococcus mutans . Mol Microbiol 65:1568–1581 [View Article][PubMed]
    [Google Scholar]
  55. Lemos J. A., Luzardo Y., Burne R. A. ( 2007b). Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans . J Bacteriol 189:1582–1588 [View Article][PubMed]
    [Google Scholar]
  56. Lemos J. A., Abranches J., Koo H., Marquis R. E., Burne R. A. ( 2010). Protocols to study the physiology of oral biofilms. Methods Mol Biol 666:87–102 [View Article][PubMed]
    [Google Scholar]
  57. Li Y., Burne R. A. ( 2001). Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate. Microbiology 147:2841–2848[PubMed]
    [Google Scholar]
  58. Liu J., Wu C., Huang I. H., Merritt J., Qi F. ( 2011). Differential response of Streptococcus mutans towards friend and foe in mixed-species cultures. Microbiology 157:2433–2444 [View Article][PubMed]
    [Google Scholar]
  59. Loesche W. J. ( 1986). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380[PubMed]
    [Google Scholar]
  60. Marrakchi H., Choi K. H., Rock C. O. ( 2002). A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae . J Biol Chem 277:44809–44816 [View Article][PubMed]
    [Google Scholar]
  61. Marsh P. D. ( 1994). Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271[PubMed]
    [Google Scholar]
  62. Martin B., Quentin Y., Fichant G., Claverys J. P. ( 2006). Independent evolution of competence regulatory cascades in streptococci?. Trends Microbiol 14:339–345 [View Article][PubMed]
    [Google Scholar]
  63. Mashburn-Warren L., Morrison D. A., Federle M. J. ( 2010). A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78:589–606 [View Article][PubMed]
    [Google Scholar]
  64. Matsui R., Cvitkovitch D. ( 2010). Acid tolerance mechanisms utilized by Streptococcus mutans . Future Microbiol 5:403–417 [View Article][PubMed]
    [Google Scholar]
  65. McCabe R. M., Donkersloot J. A. ( 1977). Adherence of Veillonella species mediated by extracellular glucosyltransferase from Streptococcus salivarius . Infect Immun 18:726–734[PubMed]
    [Google Scholar]
  66. McDermid A. S., McKee A. S., Ellwood D. C., Marsh P. D. ( 1986). The effect of lowering the pH on the composition and metabolism of a community of nine oral bacteria grown in a chemostat. J Gen Microbiol 132:1205–1214[PubMed]
    [Google Scholar]
  67. Merritt J., Qi F. ( 2012). The mutacins of Streptococcus mutans: regulation and ecology. Mol Oral Microbiol 27:57–69 [View Article][PubMed]
    [Google Scholar]
  68. Merritt J., Tsang P., Zheng L., Shi W., Qi F. ( 2007). Construction of a counterselection-based in-frame deletion system for genetic studies of Streptococcus mutans . Oral Microbiol Immunol 22:95–102 [View Article][PubMed]
    [Google Scholar]
  69. Nanamiya H., Kasai K., Nozawa A., Yun C. S., Narisawa T., Murakami K., Natori Y., Kawamura F., Tozawa Y. ( 2008). Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis . Mol Microbiol 67:291–304 [View Article][PubMed]
    [Google Scholar]
  70. Nicolas G. G., Lavoie M. C. ( 2011). [Streptococcus mutans and oral streptococci in dental plaque]. Can J Microbiol 57:1–20 [View Article][PubMed]
    [Google Scholar]
  71. Nobbs A. H., Lamont R. J., Jenkinson H. F. ( 2009). Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450 [View Article][PubMed]
    [Google Scholar]
  72. Oli M. W., Otoo H. N., Crowley P. J., Heim K. P., Nascimento M. M., Ramsook C. B., Lipke P. N., Brady L. J. ( 2012). Functional amyloid formation by Streptococcus mutans . Microbiology 158:2903–2916 [View Article][PubMed]
    [Google Scholar]
  73. Orland F. J., Blayney J. R., Harrison R. W., Reyniers J. A., Trexler P. C., Ervin R. F., Gordon H. A., Wagner M. ( 1955). Experimental caries in germfree rats inoculated with enterococci. J Am Dent Assoc 50:259–272[PubMed] [CrossRef]
    [Google Scholar]
  74. Paik S., Brown A., Munro C. L., Cornelissen C. N., Kitten T. ( 2003). The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J Bacteriol 185:5967–5975 [View Article][PubMed]
    [Google Scholar]
  75. Palmer R. J. Jr ( 2010). Supragingival and subgingival plaque: paradigm of biofilms. Compend Contin Educ Dent 31:104–106, 108, 110 passim, quiz 124, 138[PubMed]
    [Google Scholar]
  76. Perry J. A., Jones M. B., Peterson S. N., Cvitkovitch D. G., Lévesque C. M. ( 2009). Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Mol Microbiol 72:905–917 [View Article][PubMed]
    [Google Scholar]
  77. Phillips G. J., Silhavy T. J. ( 1992). The E. coli ffh gene is necessary for viability and efficient protein export. Nature 359:744–746 [View Article][PubMed]
    [Google Scholar]
  78. Potrykus K., Cashel M. ( 2008). (p)ppGpp: still magical?. Annu Rev Microbiol 62:35–51 [View Article][PubMed]
    [Google Scholar]
  79. Quivey R. G. Jr, Faustoferri R., Monahan K., Marquis R. ( 2000). Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans . FEMS Microbiol Lett 189:89–92 [View Article][PubMed]
    [Google Scholar]
  80. Quivey R. G., Kuhnert W. L., Hahn K. ( 2001). Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med 12:301–314 [View Article][PubMed]
    [Google Scholar]
  81. Schilling K. M., Bowen W. H. ( 1992). Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans . Infect Immun 60:284–295[PubMed]
    [Google Scholar]
  82. Shu M., Browngardt C. M., Chen Y. Y., Burne R. A. ( 2003). Role of urease enzymes in stability of a 10-species oral biofilm consortium cultivated in a constant-depth film fermenter. Infect Immun 71:7188–7192 [View Article][PubMed]
    [Google Scholar]
  83. Smith E. G., Spatafora G. A. ( 2012). Gene regulation in S. mutans: complex control in a complex environment. J Dent Res 91:133–141 [View Article][PubMed]
    [Google Scholar]
  84. Son M., Ahn S. J., Guo Q., Burne R. A., Hagen S. J. ( 2012). Microfluidic study of competence regulation in Streptococcus mutans: environmental inputs modulate bimodal and unimodal expression of comX . Mol Microbiol 86:258–272 [View Article][PubMed]
    [Google Scholar]
  85. Sturr M. G., Marquis R. E. ( 1992). Comparative acid tolerances and inhibitor sensitivities of isolated F-ATPases of oral lactic acid bacteria. Appl Environ Microbiol 58:2287–2291[PubMed]
    [Google Scholar]
  86. Sun D., Lee G., Lee J. H., Kim H. Y., Rhee H. W., Park S. Y., Kim K. J., Kim Y., Kim B. Y. & other authors ( 2010). A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Nat Struct Mol Biol 17:1188–1194 [View Article][PubMed]
    [Google Scholar]
  87. Suntharalingam P., Cvitkovitch D. G. ( 2005). Quorum sensing in streptococcal biofilm formation. Trends Microbiol 13:3–6 [View Article][PubMed]
    [Google Scholar]
  88. Sutton S. V., Marquis R. E. ( 1987). Membrane-associated and solubilized ATPases of Streptococcus mutans and Streptococcus sanguis . J Dent Res 66:1095–1098 [View Article][PubMed]
    [Google Scholar]
  89. Tanner A. C., Kent R. L. Jr, Holgerson P. L., Hughes C. V., Loo C. Y., Kanasi E., Chalmers N. I., Johansson I. ( 2011a). Microbiota of severe early childhood caries before and after therapy. J Dent Res 90:1298–1305 [View Article][PubMed]
    [Google Scholar]
  90. Tanner A. C., Mathney J. M., Kent R. L., Chalmers N. I., Hughes C. V., Loo C. Y., Pradhan N., Kanasi E., Hwang J. & other authors ( 2011b). Cultivable anaerobic microbiota of severe early childhood caries. J Clin Microbiol 49:1464–1474 [View Article][PubMed]
    [Google Scholar]
  91. Tong H., Chen W., Merritt J., Qi F., Shi W., Dong X. ( 2007). Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H2O2: a possible counteroffensive strategy for interspecies competition. Mol Microbiol 63:872–880 [View Article][PubMed]
    [Google Scholar]
  92. Vacca-Smith A. M., Bowen W. H. ( 1998). Binding properties of streptococcal glucosyltransferases for hydroxyapatite, saliva-coated hydroxyapatite, and bacterial surfaces. Arch Oral Biol 43:103–110 [View Article][PubMed]
    [Google Scholar]
  93. Wang B., Kuramitsu H. K. ( 2005). Inducible antisense RNA expression in the characterization of gene functions in Streptococcus mutans . Infect Immun 73:3568–3576 [View Article][PubMed]
    [Google Scholar]
  94. Wen Z. T., Burne R. A. ( 2001). Construction of a new integration vector for use in Streptococcus mutans . Plasmid 45:31–36 [View Article][PubMed]
    [Google Scholar]
  95. Whitmore S. E., Lamont R. J. ( 2011). The pathogenic persona of community-associated oral streptococci. Mol Microbiol 81:305–314 [View Article][PubMed]
    [Google Scholar]
  96. Xiao J., Klein M. I., Falsetta M. L., Lu B., Delahunty C. M., Yates J. R. III, Heydorn A., Koo H. ( 2012). The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog 8:e1002623 [View Article][PubMed]
    [Google Scholar]
  97. Yamashita Y., Bowen W. H., Burne R. A., Kuramitsu H. K. ( 1993). Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun 61:3811–3817[PubMed]
    [Google Scholar]
  98. Zeng L., Burne R. A. ( 2008). Multiple sugar : phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans . Mol Microbiol 70:197–208 [View Article][PubMed]
    [Google Scholar]
  99. Zeng L., Burne R. A. ( 2009). Transcriptional regulation of the cellobiose operon of Streptococcus mutans . J Bacteriol 191:2153–2162 [View Article][PubMed]
    [Google Scholar]
  100. Zeng L., Burne R. A. ( 2010). Seryl-phosphorylated HPr regulates CcpA-independent carbon catabolite repression in conjunction with PTS permeases in Streptococcus mutans . Mol Microbiol 75:1145–1158 [View Article][PubMed]
    [Google Scholar]
  101. Zeng L., Wen Z. T., Burne R. A. ( 2006). A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans . Mol Microbiol 62:187–200 [View Article][PubMed]
    [Google Scholar]
  102. Zinner D. D., Jablon J. M., Aran A. P., Saslaw M. S. ( 1965). Experimental caries induced in animals by streptococci of human origin. Proc Soc Exp Biol Med 118:766–770[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066134-0
Loading
/content/journal/micro/10.1099/mic.0.066134-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error