1887

Abstract

Copper and zinc are essential metal ions, but toxic in excess. Bacteria have evolved different strategies to control their intracellular concentrations, ensuring proper supply while avoiding toxicity, including the induction of metal-specific as well as non-specific mechanisms. We compared the transcriptional profiles of Typhimurium after exposure to either copper or zinc ions in both rich and minimal media. Besides metal-specific regulatory networks many global stress-response pathways react to an excess of either of these metal ions. Copper excess affects both zinc and iron homeostasis by inducing transcription of these metal-specific regulons. In addition to the control of zinc-specific regulons, zinc excess affects the Cpx regulon and the σ envelope-stress responses. Finally, novel metal-specific upregulated genes were detected including a new copper-detoxification pathway that involves the siderophore enterobactin and the outer-membrane protein TolC. This work sheds light onto the transcriptional landscape of after copper or zinc overload, and discloses a new mechanism of copper detoxification.

Funding
This study was supported by the:
  • Agencia Nacional de Promoción Científica y Tecnológica
  • National Scientific and Technical Research Council (CONICET)
  • CONICET
  • ASM
  • A.V.E program
  • U.N.R.
  • NIH (Award AI083646, AI077645,, AI075093, AI073971, AI052237 and AI039557)
  • NIH (Award HHSN272200900040C)
  • USDA (Award 2011-67017-30127 and 2009-03579)
  • Binational Agricultural Research and Development Fund
  • Center for Produce Safety
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.080473-0
2014-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1659.html?itemId=/content/journal/micro/10.1099/mic.0.080473-0&mimeType=html&fmt=ahah

References

  1. Achard M. E. S., Tree J. J., Holden J. A., Simpfendorfer K. R., Wijburg O. L. C., Strugnell R. A., Schembri M. A., Sweet M. J., Jennings M. P., McEwan A. G. ( 2010). The multi-copper-ion oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence. Infect Immun 78:2312–2319 [View Article][PubMed]
    [Google Scholar]
  2. Achard M. E., Stafford S. L., Bokil N. J., Chartres J., Bernhardt P. V., Schembri M. A., Sweet M. J., McEwan A. G. ( 2012). Copper redistribution in murine macrophages in response to Salmonella infection. Biochem J 444:51–57 [View Article][PubMed]
    [Google Scholar]
  3. Ammendola S., Pasquali P., Pistoia C., Petrucci P., Petrarca P., Rotilio G., Battistoni A. ( 2007). High-affinity Zn2+ uptake system ZnuABC is required for bacterial zinc homeostasis in intracellular environments and contributes to the virulence of Salmonella enterica . Infect Immun 75:5867–5876 [View Article][PubMed]
    [Google Scholar]
  4. Bäumler A. J., Winter S. E., Thiennimitr P., Casadesús J. ( 2011). Intestinal and chronic infections: Salmonella lifestyles in hostile environments. Environ Microbiol Rep 3:508–517 [View Article][PubMed]
    [Google Scholar]
  5. Bleuel C., Grosse C., Taudte N., Scherer J., Wesenberg D., Krauss G. J., Nies D. H., Grass G. ( 2005). TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli . J Bacteriol 187:6701–6707 [View Article][PubMed]
    [Google Scholar]
  6. Braymer J. J., Giedroc D. P. ( 2014). Recent developments in copper and zinc homeostasis in bacterial pathogens. Curr Opin Chem Biol 19:59–66 [View Article][PubMed]
    [Google Scholar]
  7. Brocklehurst K. R., Hobman J. L., Lawley B., Blank L., Marshall S. J., Brown N. L., Morby A. P. ( 1999). ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli . Mol Microbiol 31:893–902 [View Article][PubMed]
    [Google Scholar]
  8. Brokx S. J., Rothery R. A., Zhang G., Ng D. P., Weiner J. H. ( 2005). Characterization of an Escherichia coli sulfite oxidase homologue reveals the role of a conserved active site cysteine in assembly and function. Biochemistry 44:10339–10348 [View Article][PubMed]
    [Google Scholar]
  9. Chaturvedi K. S., Hung C. S., Crowley J. R., Stapleton A. E., Henderson J. P. ( 2012). The siderophore yersiniabactin binds copper to protect pathogens during infection. Nat Chem Biol 8:731–736 [View Article][PubMed]
    [Google Scholar]
  10. Chaturvedi K. S., Hung C. S., Giblin D. E., Urushidani S., Austin A. M., Dinauer M. C., Henderson J. P. ( 2014). Cupric yersiniabactin is a virulence-associated superoxide dismutase mimic. ACS Chem Biol 9:551–561 [View Article][PubMed]
    [Google Scholar]
  11. Checa S. K., Espariz M., Pérez Audero M. E., Botta P. E., Spinelli S. V., Soncini F. C. ( 2007). Bacterial sensing of and resistance to gold salts. Mol Microbiol 63:1307–1318 [View Article][PubMed]
    [Google Scholar]
  12. Cherepanov P. P., Wackernagel W. ( 1995). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14 [View Article][PubMed]
    [Google Scholar]
  13. Crosa J. H., Walsh C. T. ( 2002). Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249 [View Article][PubMed]
    [Google Scholar]
  14. Davidson A. L., Dassa E., Orelle C., Chen J. ( 2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364 [View Article][PubMed]
    [Google Scholar]
  15. Dupont C. L., Grass G., Rensing C. ( 2011). Copper toxicity and the origin of bacterial resistance – new insights and applications. Metallomics 3:1109–1118 [View Article][PubMed]
    [Google Scholar]
  16. Espariz M., Checa S. K., Pérez Audero M. E., Pontel L. B., Soncini F. C. ( 2007). Dissecting the Salmonella response to copper. Microbiology 153:2989–2997 [View Article][PubMed]
    [Google Scholar]
  17. Evans M. R., Fink R. C., Vazquez-Torres A., Porwollik S., Jones-Carson J., McClelland M., Hassan H. M. ( 2011). Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiol 11:58 [View Article][PubMed]
    [Google Scholar]
  18. Fink R. C., Evans M. R., Porwollik S., Vazquez-Torres A., Jones-Carson J., Troxell B., Libby S. J., McClelland M., Hassan H. M. ( 2007). FNR is a global regulator of virulence and anaerobic metabolism in Salmonella enterica serovar Typhimurium (ATCC 14028s). J Bacteriol 189:2262–2273 [View Article][PubMed]
    [Google Scholar]
  19. Gabriel S. E., Helmann J. D. ( 2009). Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions. J Bacteriol 191:6116–6122 [View Article][PubMed]
    [Google Scholar]
  20. Grass G., Thakali K., Klebba P. E., Thieme D., Müller A., Wildner G. F., Rensing C. ( 2004). Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli . J Bacteriol 186:5826–5833 [View Article][PubMed]
    [Google Scholar]
  21. Groisman E. A., Hollands K., Kriner M. A., Lee E.-J., Park S.-Y., Pontes M. H. ( 2013). Bacterial Mg2+ homeostasis, transport, and virulence. Annu Rev Genet 47:625–646 [View Article][PubMed]
    [Google Scholar]
  22. Hitchcock A., Hall S. J., Myers J. D., Mulholland F., Jones M. A., Kelly D. J. ( 2010). Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni . Microbiology 156:2994–3010 [View Article][PubMed]
    [Google Scholar]
  23. Hodgkinson V., Petris M. J. ( 2012). Copper homeostasis at the host–pathogen interface. J Biol Chem 287:13549–13555 [View Article][PubMed]
    [Google Scholar]
  24. Hood M. I., Skaar E. P. ( 2012). Nutritional immunity: transition metals at the pathogen–host interface. Nat Rev Microbiol 10:525–537 [View Article][PubMed]
    [Google Scholar]
  25. Kamau P., Jordan R. B. ( 2002). Kinetic study of the oxidation of catechol by aqueous copper(II). Inorg Chem 41:3076–3083 [View Article][PubMed]
    [Google Scholar]
  26. Kershaw C. J., Brown N. L., Constantinidou C., Patel M. D., Hobman J. L. ( 2005). The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology 151:1187–1198 [View Article][PubMed]
    [Google Scholar]
  27. Kimura T., Nishioka H. ( 1997). Intracellular generation of superoxide by copper sulphate in Escherichia coli . Mutat Res 389:237–242 [View Article][PubMed]
    [Google Scholar]
  28. Kobayashi K., Mizuno M., Fujikawa M., Mizutani Y. ( 2011). Protein conformational changes of the oxidative stress sensor, SoxR, upon redox changes of the [2Fe-2S] cluster probed with ultraviolet resonance Raman spectroscopy. Biochemistry 50:9468–9474 [View Article][PubMed]
    [Google Scholar]
  29. Kobayashi K., Fujikawa M., Kozawa T. ( 2014). Oxidative stress sensing by the iron-sulfur cluster in the transcription factor, SoxR. J Inorg Biochem 133:87–91 [View Article][PubMed]
    [Google Scholar]
  30. Lee L. J., Barrett J. A., Poole R. K. ( 2005). Genome-wide transcriptional response of chemostat-cultured Escherichia coli to zinc. J Bacteriol 187:1124–1134 [View Article][PubMed]
    [Google Scholar]
  31. Liu J. Z., Jellbauer S., Poe A. J., Ton V., Pesciaroli M., Kehl-Fie T. E., Restrepo N. A., Hosking M. P., Edwards R. A. & other authors ( 2012). Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe 11:227–239 [View Article][PubMed]
    [Google Scholar]
  32. Loschi L., Brokx S. J., Hills T. L., Zhang G., Bertero M. G., Lovering A. L., Weiner J. H., Strynadka N. C. J. ( 2004). Structural and biochemical identification of a novel bacterial oxidoreductase. J Biol Chem 279:50391–50400 [View Article][PubMed]
    [Google Scholar]
  33. Macomber L., Imlay J. A. ( 2009). The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity. Proc Natl Acad Sci U S A 106:8344–8349 [View Article][PubMed]
    [Google Scholar]
  34. Moore C. M., Helmann J. D. ( 2005). Metal ion homeostasis in Bacillus subtilis . Curr Opin Microbiol 8:188–195 [View Article][PubMed]
    [Google Scholar]
  35. Morales E. H., Collao B., Desai P. T., Calderón I. L., Gil F., Luraschi R., Porwollik S., McClelland M., Saavedra C. P. ( 2013). Probing the ArcA regulon under aerobic/ROS conditions in Salmonella enterica serovar Typhimurium. BMC Genomics 14:626 [View Article][PubMed]
    [Google Scholar]
  36. Newton S. M., Trinh V., Pi H., Klebba P. E. ( 2010). Direct measurements of the outer membrane stage of ferric enterobactin transport: postuptake binding. J Biol Chem 285:17488–17497 [View Article][PubMed]
    [Google Scholar]
  37. Osman D., Cavet J. S. ( 2011). Metal sensing in Salmonella: implications for pathogenesis. Adv Microb Physiol 58175–232
    [Google Scholar]
  38. Panina E. M., Mironov A. A., Gelfand M. S. ( 2003). Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci U S A 100:9912–9917 [View Article][PubMed]
    [Google Scholar]
  39. Pérez Audero M. E., Podoroska B. M., Ibáñez M. M., Cauerhff A., Checa S. K., Soncini F. C. ( 2010). Target transcription binding sites differentiate two groups of MerR-monovalent metal ion sensors. Mol Microbiol 78:853–865 [View Article][PubMed]
    [Google Scholar]
  40. Petrarca P., Ammendola S., Pasquali P., Battistoni A. ( 2010). The Zur-regulated ZinT protein is an auxiliary component of the high-affinity ZnuABC zinc transporter that facilitates metal recruitment during severe zinc shortage. J Bacteriol 192:1553–1564 [View Article][PubMed]
    [Google Scholar]
  41. Pontel L. B., Soncini F. C. ( 2009). Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol Microbiol 73:212–225 [View Article][PubMed]
    [Google Scholar]
  42. Porcheron G., Garénaux A., Proulx J., Sabri M., Dozois C. M. ( 2013). Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 3:90 [View Article][PubMed]
    [Google Scholar]
  43. Shin J.-H., Oh S.-Y., Kim S.-J., Roe J.-H. ( 2007). The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J Bacteriol 189:4070–4077 [View Article][PubMed]
    [Google Scholar]
  44. Tsolis R. M., Bäumler A. J., Stojiljkovic I., Heffron F. ( 1995). Fur regulon of Salmonella typhimurium: identification of new iron-regulated genes. J Bacteriol 177:4628–4637[PubMed]
    [Google Scholar]
  45. Vega D. E., Young K. D. ( 2014). Accumulation of periplasmic enterobactin impairs the growth and morphology of Escherichia coli tolC mutants. Mol Microbiol 91:508–521 [View Article][PubMed]
    [Google Scholar]
  46. Vogt S. L., Raivio T. L. ( 2012). Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiol Lett 326:2–11 [View Article][PubMed]
    [Google Scholar]
  47. Wang D., Hosteen O., Fierke C. A. ( 2012). ZntR-mediated transcription of zntA responds to nanomolar intracellular free zinc. J Inorg Biochem 111:173–181 [View Article][PubMed]
    [Google Scholar]
  48. Wolschendorf F., Ackart D., Shrestha T. B., Hascall-Dove L., Nolan S., Lamichhane G., Wang Y., Bossmann S. H., Basaraba R. J., Niederweis M. ( 2011). Copper resistance is essential for virulence of Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 108:1621–1626 [View Article][PubMed]
    [Google Scholar]
  49. Xia X.-Q., McClelland M., Porwollik S., Song W., Cong X., Wang Y. ( 2009). WebArrayDB: cross-platform microarray data analysis and public data repository. Bioinformatics 25:2425–2429 [View Article][PubMed]
    [Google Scholar]
  50. Yamamoto K., Ishihama A. ( 2005). Transcriptional response of Escherichia coli to external copper. Mol Microbiol 56:215–227 [View Article][PubMed]
    [Google Scholar]
  51. Yamamoto K., Oshima T., Nonaka G., Ito H., Ishihama A. ( 2011). Induction of the Escherichia coli cysK gene by genetic and environmental factors. FEMS Microbiol Lett 323:88–95 [View Article][PubMed]
    [Google Scholar]
  52. Zgurskaya H. I., Krishnamoorthy G., Ntreh A., Lu S. ( 2011). Mechanism and function of the outer membrane channel TolC in multidrug resistance and physiology of enterobacteria. Front Microbiol 2:189 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.080473-0
Loading
/content/journal/micro/10.1099/mic.0.080473-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error