1887

Abstract

The low level of available iron is a major obstacle for microbial pathogens and is a stimulus for the expression of virulence genes. In this study, H37Rv was grown aerobically in the presence of limited iron availability in chemostat culture to determine the physiological response of the organism to iron-limitation. A previously unidentified wax ester accumulated under iron-limited growth, and changes in the abundance of triacylglycerol and menaquinone were also observed between iron-replete and iron-limited chemostat cultures. DNA microarray analysis revealed differential expression of genes involved in glycerolipid metabolism and isoprenoid quinone biosynthesis, providing some insight into the underlying genetic changes that correlate with cell-wall lipid profiles of growing in an iron-limited environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004317-0
2007-05-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1435.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004317-0&mimeType=html&fmt=ahah

References

  1. Alvarez H. M., Kalscheuer R., Steinbuchel A. 2000; Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126. Appl Microbiol Biotechnol 54:218–223 [CrossRef]
    [Google Scholar]
  2. Bacon J., James B. W., Wernisch L., Williams A., Morley K. A., Hatch G. J., Mangan J. A., Hinds J., Stoker N. G. other authors 2004; The influence of reduced oxygen availability on pathogenicity and gene expression in Mycobacterium tuberculosis. Tuberculosis (Edinb) 84205–217 [CrossRef]
    [Google Scholar]
  3. Bono H., Ogata H., Goto S., Kanehisa M. 1998; Reconstruction of amino acid biosynthesis pathways from the complete genome sequence. Genome Res 8:203–210 [CrossRef]
    [Google Scholar]
  4. Cox J. S., Chen B., McNeil M., Jacobs W. R. 1999; Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83 [CrossRef]
    [Google Scholar]
  5. Daniel J., Deb C., Dubey V. S., Sirakova T. D., Abomoelak B., Morbidoni H. R., Kolattukudy P. E. 2004; Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030 [CrossRef]
    [Google Scholar]
  6. Deb C., Daniel J., Sirakova T. D., Abomoelak B., Dubey V. S., Kolattukudy P. E. 2006; A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J Biol Chem 281:3866–3875 [CrossRef]
    [Google Scholar]
  7. De Voss J. J., Rutter K., Schroeder B. G., Su H., Zhu Y., Barry C. E., III. 2000; The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. Proc Natl Acad Sci U S A 97:1252–1257 [CrossRef]
    [Google Scholar]
  8. Dobson G., Minnikin D. E., Minnikin S. M., Partlett J. H., Goodfellow M., Ridell M. M. M. 1985 Systematic Analysis of Complex Mycobacterial Lipids London: Academic Press;
    [Google Scholar]
  9. Fan J. 2005; Semilinear high-dimensional model for normalization of microarray data: a theoretical analysis and partial consistency. J Am Stat Assoc 100:781–813 [CrossRef]
    [Google Scholar]
  10. Garbe T. R., Hibler N. S., Deretic V. 1996; Response of Mycobacterium tuberculosis to reactive oxygen and nitrogen intermediates. Mol Med 2:134–142
    [Google Scholar]
  11. Garton N. J., Christensen H., Minnikin D. E., Adegbola R. A., Barer M. R. 2002; Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiology 148:2951–2958
    [Google Scholar]
  12. Gold B., Rodriguez G. M., Marras S. A., Pentecost M., Smith I. 2001; The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 42:851–865
    [Google Scholar]
  13. James B. W., Williams A., Marsh P. D. 2000; The physiology and pathogenicity of Mycobacterium tuberculosis grown under controlled conditions in a defined medium. J Appl Microbiol 88:669–677 [CrossRef]
    [Google Scholar]
  14. Kalscheuer R., Steinbuchel A. 2003; A novel bifunctional wax ester synthase/acyl-CoA : diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 278:8075–8082 [CrossRef]
    [Google Scholar]
  15. Karp P. D., Krummenacker M., Paley S., Wagg J. 1999; Integrated pathway-genome databases and their role in drug discovery. Trends Biotechnol 17:275–281 [CrossRef]
    [Google Scholar]
  16. Korf J., Stoltz A., Verschoor J., De Baetselier P., Grooten J. 2005; The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses. Eur J Immunol 35:890–900 [CrossRef]
    [Google Scholar]
  17. Kunkle C. A., Schmitt M. P. 2005; Analysis of a DtxR-regulated iron transport and siderophore biosynthesis gene cluster in Corynebacterium diphtheriae. J Bacteriol 187:422–433 [CrossRef]
    [Google Scholar]
  18. Manabe Y. C., Hatem C. L., Kesavan A. K., Durack J., Murphy J. R. 2005; Both Corynebacterium diphtheriae DtxR(E175K) and Mycobacterium tuberculosis IdeR(D177K) are dominant positive repressors of IdeR-regulated genes in M. tuberculosis. Infect Immun 73:5988–5994 [CrossRef]
    [Google Scholar]
  19. Minnikin D. E., Dobson G., Draper P. 1985; The free lipids of Mycobacterium leprae harvested from experimentally infected nine-banded armadillos. J Gen Microbiol 131:2007–2011
    [Google Scholar]
  20. Minnikin D. E., Laurent K., Dover L. G., Besra G. S. 2002; The methyl-branched fortifications of Mycobacterium tuberculosis. Chem Biol 9:545–553 [CrossRef]
    [Google Scholar]
  21. Olakanmi O., Schlesinger L. S., Ahmed A., Britigan B. E. 2002; Intraphagosomal Mycobacterium tuberculosis acquires iron from both extracellular transferrin and intracellular iron pools. Impact of interferon-gamma and hemochromatosis. J Biol Chem 277:49727–49734 [CrossRef]
    [Google Scholar]
  22. Pessolani M. C., Smith D. R., Rivoire B., McCormick J., Hefta S. A., Cole S. T., Brennan P. J. 1994; Purification, characterization, gene sequence, and significance of a bacterioferritin from Mycobacterium leprae. J Exp Med 180:319–327 [CrossRef]
    [Google Scholar]
  23. Ratledge C. 2004; Iron, mycobacteria and tuberculosis. Tuberculosis (Edinb) 84110–130 [CrossRef]
    [Google Scholar]
  24. Ratledge C., Dover L. G. 2000; Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941 [CrossRef]
    [Google Scholar]
  25. Ratledge C., Ewing M. 1996; The occurrence of carboxymycobactin, the siderophore of pathogenic mycobacteria, as a second extracellular siderophore in Mycobacterium smegmatis. Microbiology 142:2207–2212 [CrossRef]
    [Google Scholar]
  26. Reed M. B., Domenech P., Manca C., Su H., Barczak A. K., Kreiswirth B. N., Kaplan G., Barry C. E. 3rd (2004; A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:84–87 [CrossRef]
    [Google Scholar]
  27. Rodriguez G. M., Smith I. 2003; Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol Microbiol 47:1485–1494 [CrossRef]
    [Google Scholar]
  28. Rodriguez G. M., Gold B., Gomez M., Dussurget O., Smith I. 1999; Identification and characterization of two divergently transcribed iron regulated genes in Mycobacterium tuberculosis. Tuber Lung Dis 79:287–298 [CrossRef]
    [Google Scholar]
  29. Rodriguez G. M., Voskuil M. I., Gold B., Schoolnik G. K., Smith I. 2002; ideR , an essential gene in Mycobacterium tuberculosis : role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70:3371–3381 [CrossRef]
    [Google Scholar]
  30. Schnappinger D., Ehrt S., Voskuil M. I., Liu Y., Mangan J. A., Monahan I. M., Dolganov G., Efron B., Butcher P. D. other authors 2003; Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704 [CrossRef]
    [Google Scholar]
  31. Smith J. L. 2004; The physiological role of ferritin-like compounds in bacteria. Crit Rev Microbiol 30:173–185 [CrossRef]
    [Google Scholar]
  32. Sun Z., Cheng S. J., Zhang H., Zhang Y. 2001; Salicylate uniquely induces a 27-kDa protein in tubercle bacillus. FEMS Microbiol Lett 203:211–216 [CrossRef]
    [Google Scholar]
  33. Tsujita T., Sumiyoshi M., Okuda H. 1999; Wax ester-synthesizing activity of lipases. Lipids 34:1159–1166 [CrossRef]
    [Google Scholar]
  34. Tusher V. G., Tibshirani R., Chu G. 2001; Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121 [CrossRef]
    [Google Scholar]
  35. Venables W. N., Ripley B. D. 2002 Modern Applied Statistics with S , 4th edn. New York: Springer;
    [Google Scholar]
  36. Wagner D., Maser J., Lai B., Cai Z., Barry C. E., III, Honer zu Bentrup K., Russell D. G., Bermudez L. E. 2005; Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis- , and Mycobacterium smegmatis -containing phagosomes indicates pathogen-induced microenvironments within the host cell's endosomal system. J Immunol 174:1491–1500 [CrossRef]
    [Google Scholar]
  37. Waltermann M., Steinbuchel A. 2005; Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619 [CrossRef]
    [Google Scholar]
  38. Waltermann M., Hinz A., Robenek H., Troyer D., Reichelt R., Malkus U., Galla H.J., Kalscheuer R., Stoveken T. other authors 2005; Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763
    [Google Scholar]
  39. Wernisch L., Kendall S. L., Soneji S., Wietzorrek A., Parish T., Hinds J., Butcher P. D., Stoker N. G. 2003; Analysis of whole-genome microarray replicates using mixed models. Bioinformatics 19:53–61 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004317-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004317-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error