1887

Abstract

faces iron deprivation in both nature and the host. To overcome this limitation, secretes the siderophores 2,3-dihydroxybenzoic acid and brucebactin. A Fur-like protein named Irr has previously been characterized in ; this protein is present in the -2 group of only, where it negatively regulates haem biosynthesis when iron is scarce. Additional evidence that Irr also regulates the synthesis of both siderophores is presented here. Transcriptional fusion and chemical determinations revealed that Irr induced the transcription of the operon involved in the synthesis of the catecholic siderophores, which were consequently secreted under conditions of iron limitation. Irr was able to bind the upstream region of the operon, as shown by electrophoretic mobility shift assay. A mutant showed higher intracellular haem content, catalase activity and resistance to hydrogen peroxide than the wild-type strain. The mutation also improved the replication and survival of iron-depleted bacteria within cultured mammalian cells. Although the pathogenesis of correlates with its ability to replicate intracellularly, pathogenicity was not attenuated when assayed in a murine model.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28782-0
2006-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/9/2591.html?itemId=/content/journal/micro/10.1099/mic.0.28782-0&mimeType=html&fmt=ahah

References

  1. Almirón M, Link A. J, Furlong D, Kolter R. 1992; A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli . Genes Dev 6:2646–2654 [CrossRef]
    [Google Scholar]
  2. Almirón M, Martínez M, Sanjuan N, Ugalde R. A. 2001; Ferrochelatase is present in Brucella abortus and is critical for its intracellular survival and virulence. Infect Immun 69:6225–6230 [CrossRef]
    [Google Scholar]
  3. Altschul S. F, Gish W, Miller W, Myers E. W, Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  4. Beers R. F., Jr, Sizer I. W. 1952; A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140
    [Google Scholar]
  5. Bellaire B. H, Elzer P. H, Baldwin C. L, Roop R. M., II. 1999; The siderophore 2,3-dihydroxybenzoic acid is not required for virulence of Brucella abortus in Balb/c mice. Infect Immun 67:2615–2618
    [Google Scholar]
  6. Bellaire B. H, Elzer P. H, Hagius S, Walker J, Baldwin C. L, Roop R. M., II. 2003; Genetic organization and iron-responsive regulation of the Brucella abortus 2,3-dihydroxybenzoic acid biosynthesis operon, a cluster of genes required for wild-type virulence in pregnant cattle. Infect Immun 71:1794–1803 [CrossRef]
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  8. Bsat N, Herbig A, Setlow P, Helmann J. D, Casillas-Martínez L. 1998; Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–198 [CrossRef]
    [Google Scholar]
  9. Bullen J. J, Griffiths E. 1999 Iron and Infection: Molecular, Physiological and Clinical Aspects pp  1–26 Chichester, UK: Wiley;
    [Google Scholar]
  10. Chain P. S, Comerci D. J, Tolmasky M. E. 7 other authors 2005; Whole-genome analyses of the speciation events in the pathogenic Brucellae . Infect Immun 73:8353–8361 [CrossRef]
    [Google Scholar]
  11. Chen L, Keramati L, Helmann J. D. 1995; Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc Natl Acad Sci U S A 92:8190–8194 [CrossRef]
    [Google Scholar]
  12. DelVecchio V. G, Kapatral V, Redkar R. J. 22 other authors 2002; The genome sequence of the facultative intracellular pathogen Brucella melitensis . Proc Natl Acad Sci U S A 99:443–448 [CrossRef]
    [Google Scholar]
  13. Frustaci J. M, Sangwan I, O'Brian M. R. 1991; Aerobic growth and respiration of a delta-aminolevulinic acid synthase (hemA) mutant of Bradyrhizobium japonicum . J Bacteriol 173:1145–1150
    [Google Scholar]
  14. Gee J. M, Kovach M. E, Grippe V. K, Hagius S, Walker J. V, Elzer P. H, Roop R. M. II 2004; Role of catalase in the virulence of Brucella melitensis in pregnant goats. Vet Microbiol 102:111–115 [CrossRef]
    [Google Scholar]
  15. Gonzalez Carrero M. I, Sangari F. J, Aguero J, Garcia Lobo J. M. 2002; Brucella abortus strain 2308 produces brucebactin, a highly efficient catecholic siderophore. Microbiology 148:353–360
    [Google Scholar]
  16. Halling S. M, Peterson-Burch B. D, Bricker B. J, Zuerner R. L, Qing Z, Li L. L, Kapur V, Alt D. P, Olsen S. C. 2005; Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis . J Bacteriol 187:2715–2726 [CrossRef]
    [Google Scholar]
  17. Hamza I, Chauhan S, Hassett R, O'Brian M. R. 1998; The bacterial Irr protein is required for coordination of heme biosynthesis with iron availability. J Biol Chem 273:21669–21674 [CrossRef]
    [Google Scholar]
  18. Harvie D. R, Vilchez S, Steggles J. R, Ellar D. J. 2005; Bacillus cereus Fur regulates iron metabolism and is required for full virulence. Microbiology 151:569–577 [CrossRef]
    [Google Scholar]
  19. Jiang X, Baldwin C. L. 1993; Iron augments macrophage-mediated killing of Brucella abortus alone and in conjunction with interferon-gamma. Cell Immunol 148:397–407 [CrossRef]
    [Google Scholar]
  20. Kim J. A, Mayfield J. 2000; Identification of Brucella abortus OxyR and its role in control of catalase expression. J Bacteriol 182:5631–5633 [CrossRef]
    [Google Scholar]
  21. Kim J. A, Sha Z, Mayfield J. E. 2000; Regulation of Brucella abortus catalase. Infect Immun 68:3861–3866 [CrossRef]
    [Google Scholar]
  22. LeVier K, Phillips R. W, Grippe V. K, Walker G. C, Roop R. M., II. 2000; Similar requirements of a plant symbiont and a mammalian pathogen for prolonged intracellular survival. Science 287:2492–2493 [CrossRef]
    [Google Scholar]
  23. Litwin C. M, Calderwood S. B. 1993; Role of iron in regulation of virulence genes. Clin Microbiol Rev 6:137–149
    [Google Scholar]
  24. Lopez-Goñi I, Moriyón I., Neilands J. B. 1992; Identification of 2,3-dihydroxybenzoic acid as a Brucella abortus siderophore. Infect Immun 60:4496–4503
    [Google Scholar]
  25. Martínez M, Ugalde R. A, Almirón M. 2005; Dimeric Brucella abortus Irr protein controls its own expression and binds haem. Microbiology 151:3427–3433 [CrossRef]
    [Google Scholar]
  26. Miller J. H. 1992 A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Paulsen I. T, Seshadri R, Nelson K. E, Eisen J. A, Heidelberg J. F, Read T. D, Dodson R. J. & 28 other authors; 2002; The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts. Proc Natl Acad Sci U S A 99:13148–13153 [CrossRef]
    [Google Scholar]
  28. Qi Z, O'Brian M. R. 2002; Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. Mol Cell 9:155–162 [CrossRef]
    [Google Scholar]
  29. Qi Z, Hamza I, O'Brian M. R. 1999; Heme is an effector molecule for iron-dependent degradation of the bacterial iron response regulator (Irr) protein. Proc Natl Acad Sci U S A 96:13056–13061 [CrossRef]
    [Google Scholar]
  30. Roop M. R II, Bellaire B. H, Anderson A. J, Paulley J. T. 2004; Iron metabolism in Brucella. In Brucella: Molecular and Cellular Biology pp  243–262 Edited by Lopez-Goni I., Moriyón I. Pamplona: Horizon Bioscience;
    [Google Scholar]
  31. Rudolph G, Semini G, Hauser F, Lindemann A, Friberg M, Hennecke H, Fischer H. M. 2006; The Iron control element, acting in positive and negative control of iron-regulated Bradyrhizobium japonicum genes, is a target for the Irr protein. J Bacteriol 188:733–744 [CrossRef]
    [Google Scholar]
  32. Sangari F. J, Aguero J. 1996; Molecular basis of Brucella pathogenicity: an update. Microbiologia 12:207–218
    [Google Scholar]
  33. Schwyn B, Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [CrossRef]
    [Google Scholar]
  34. Sha Z, Stabel T. J, Mayfield J. E. 1994; Brucella abortus catalase is a periplasmic protein lacking a standard signal sequence. J Bacteriol 176:7375–7377
    [Google Scholar]
  35. Smith L. D, Ficht T. A. 1990; Pathogenesis of Brucella . Crit Rev Microbiol 17:209–230 [CrossRef]
    [Google Scholar]
  36. Ugalde R. A. 1999; Intracellular lifestyle of Brucella spp. Common genes with other animal pathogens, plant pathogens, and endosymbionts. Microbes Infect 1:1211–1219 [CrossRef]
    [Google Scholar]
  37. van Vliet A. H, Baillon M. L, Penn C. W, Ketley J. M. 1999; Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol 181:6371–6376
    [Google Scholar]
  38. Wandersman C, Delepelaire P. 2004; Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28782-0
Loading
/content/journal/micro/10.1099/mic.0.28782-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error