1887

Abstract

Ostreid herpesvirus 1 (OsHV-1) is the only member of the that has an invertebrate host and is associated with sporadic mortality in the Pacific oyster () and other bivalve species. Cryo-electron microscopy of purified capsids revealed the distinctive =16 icosahedral structure characteristic of herpesviruses, although the preparations examined lacked pentons. The gross genome organization of OsHV-1 was similar to that of certain mammalian herpesviruses (including herpes simplex virus and human cytomegalovirus), consisting of two invertible unique regions (U, 167·8 kbp; U, 3·4 kbp) each flanked by inverted repeats (TR/IR, 7·6 kbp; TR/IR, 9·8 kbp), with an additional unique sequence (X, 1·5 kbp) between IR and IR. Of the 124 unique genes predicted from the 207 439 bp genome sequence, 38 were members of 12 families of related genes and encoded products related to helicases, inhibitors of apoptosis, deoxyuridine triphosphatase and RING-finger proteins, in addition to membrane-associated proteins. Eight genes in three of the families appeared to be fragmented. Other genes that did not belong to the families were predicted to encode DNA polymerase, the two subunits of ribonucleotide reductase, a helicase, a primase, the ATPase subunit of terminase, a RecB-like protein, additional RING-like proteins, an ion channel and several other membrane-associated proteins. Sequence comparisons showed that OsHV-1 is at best tenuously related to the two classes of vertebrate herpesviruses (those associated with mammals, birds and reptiles, and those associated with bony fish and amphibians). OsHV-1 thus represents a third major class of the herpesviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80382-0
2005-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/1/vir860041.html?itemId=/content/journal/jgv/10.1099/vir.0.80382-0&mimeType=html&fmt=ahah

References

  1. Afonso C. L., Tulman E. R., Lu Z., Oma E., Kutish G. F., Rock D. L. 1999; The genome of Melanoplus sanguinipes entomopoxvirus. J Virol 73:533–552
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Aravind L., Walker D. R., Koonin E. V. 1999; Conserved domains in DNA repair proteins and evolution of repair systems. Nucleic Acids Res 27:1223–1242 [CrossRef]
    [Google Scholar]
  4. Arzul I., Nicolas J.-L., Davison A. J., Renault T. 2001a; French scallops: a new host for ostreid herpesvirus-1. Virology 290:342–349 [CrossRef]
    [Google Scholar]
  5. Arzul I., Renault T., Lipart C. 2001b; Experimental herpes-like viral infections in marine bivalves: demonstration of interspecies transmission. Dis Aquat Organ 46:1–6 [CrossRef]
    [Google Scholar]
  6. Arzul I., Renault T., Lipart C., Davison A. J. 2001c; Evidence for interspecies transmission of oyster herpesvirus in marine bivalves. J Gen Virol 82:865–870
    [Google Scholar]
  7. Arzul I., Renault T., Thébault A., Gérard A. 2002; Detection of oyster herpesvirus DNA and proteins in asymptomatic Crassostrea gigas adults. Virus Res 84:151–160 [CrossRef]
    [Google Scholar]
  8. Baker T. S., Cheng R. H. 1996; A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J Struct Biol 116:120–130 [CrossRef]
    [Google Scholar]
  9. Barbosa-Solomieu V., Miossec L., Vázquez-Juárez R., Ascencio-Valle F., Renault T. 2004; Diagnosis of ostreid herpesvirus 1 in fixed paraffin-embedded archival samples using PCR and in situ hybridisation. J Virol Methods 119:65–72 [CrossRef]
    [Google Scholar]
  10. Bernard J., Mercier A. 1993; Sequences of two Eco RI fragments from salmonis herpesvirus 2 and comparison with ictalurid herpesvirus 1. Arch Virol 132:437–442 [CrossRef]
    [Google Scholar]
  11. Bhella D., Rixon F. J., Dargan D. J. 2000; Cryomicroscopy of human cytomegalovirus virions reveals more densely packed genomic DNA than in herpes simplex virus type 1. J Mol Biol 295:155–161 [CrossRef]
    [Google Scholar]
  12. Booy F. P., Trus B. L., Newcomb W. W., Brown J. C., Conway J. F., Steven A. C. 1994; Finding a needle in a haystack: detection of a small protein (the 12-kDa VP26) in a large complex (the 200-MDa capsid of herpes simplex virus). Proc Natl Acad Sci U S A 91:5652–5656 [CrossRef]
    [Google Scholar]
  13. Booy F. P., Trus B. L., Davison A. J., Steven A. C. 1996; The capsid architecture of channel catfish virus, an evolutionarily distant herpesvirus, is largely conserved in the absence of discernible sequence homology with herpes simplex virus. Virology 215:134–141 [CrossRef]
    [Google Scholar]
  14. Chang H. W., Julin D. A. 2001; Structure and function of the Escherichia coli RecE protein, a member of the RecB nuclease domain family. J Biol Chem 276:46004–46010 [CrossRef]
    [Google Scholar]
  15. Chee M. S., Bankier A. T., Beck S. 12 other authors 1990; Analysis of the protein coding content of the sequence of human cytomegalovirus strain AD169. Curr Top Microbiol Immunol 154:125–169
    [Google Scholar]
  16. Cheng N., Trus B. L., Belnap D. M., Newcomb W. W., Brown J. C., Steven A. C. 2002; Handedness of the herpes simplex virus capsid and procapsid. J Virol 76:7855–7859 [CrossRef]
    [Google Scholar]
  17. Comps M., Cochennec N. 1993; A herpes-like virus from the European oyster Ostrea edulis L. J Invertebr Pathol 62:201–203 [CrossRef]
    [Google Scholar]
  18. Crook N. E., Clem R. J., Miller L. K. 1993; An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 67:2168–2174
    [Google Scholar]
  19. Cunningham C., Davison A. J. 1993; A cosmid-based system for constructing mutants of herpes simplex virus type 1. Virology 197:116–124 [CrossRef]
    [Google Scholar]
  20. Davison A. J. 1992; Channel catfish virus: a new type of herpesvirus. Virology 186:9–14 [CrossRef]
    [Google Scholar]
  21. Davison A. J. 1998; The genome of salmonid herpesvirus 1. J Virol 72:1974–1982
    [Google Scholar]
  22. Davison A. J. 2002; Evolution of the herpesviruses. Vet Microbiol 86:69–88 [CrossRef]
    [Google Scholar]
  23. Davison A. J., Davison M. D. 1995; Identification of structural proteins of channel catfish virus by mass spectrometry. Virology 206:1035–1043 [CrossRef]
    [Google Scholar]
  24. Davison A. J., Sauerbier W., Dolan A., Addison C., McKinnell R. G. 1999; Genomic studies of the Lucké tumor herpesvirus (RaHV-1). J Cancer Res Clin Oncol 125:232–238 [CrossRef]
    [Google Scholar]
  25. Davison A. J., Dolan A., Akter P., Addison C., Dargan D. J., Alcendor D. J., McGeoch D. J., Hayward G. S. 2003; The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. J Gen Virol 84:17–28 [CrossRef]
    [Google Scholar]
  26. Ewing B., Green P. 1998; Base-calling of automated sequencer traces using Phred . II. Error probabilities. Genome Res 8:186–194
    [Google Scholar]
  27. Ewing B., Hillier L., Wendl M. C., Green P. 1998; Base-calling of automated sequencer traces using Phred . I. Accuracy assessment. Genome Res 8:175–185 [CrossRef]
    [Google Scholar]
  28. Farley C. A., Banfield W. G., Kasnic G. Jr, Foster W. S. 1972; Oyster herpes-type virus. Science 178:759–760 [CrossRef]
    [Google Scholar]
  29. Gorbalenya A. E., Koonin E. V. 1993; Helicases: amino acid sequence comparisons and structure–function relationships. Curr Opin Struct Biol 3:419–429 [CrossRef]
    [Google Scholar]
  30. Gubser C., Hué S., Kellam P., Smith G. L. 2004; Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85:105–117 [CrossRef]
    [Google Scholar]
  31. Hayward G. S., Jacob R. J., Wadsworth S. C., Roizman B. 1975; Anatomy of herpes simplex virus DNA: evidence for four populations of molecules that differ in the relative orientations of their long and short components. Proc Natl Acad Sci U S A 72:4243–4247 [CrossRef]
    [Google Scholar]
  32. Hine P. M. 1997; Trends in research on diseases of bivalve molluscs. Bull Eur Assoc Fish Pathol 17:180–183
    [Google Scholar]
  33. Hine P. M., Thorne T. 1997; Replication of herpes-like viruses in haemocytes of adult flat oysters Ostrea angasi : an ultrastructural study. Dis Aquat Organ 29:189–196 [CrossRef]
    [Google Scholar]
  34. Hine P. M., Wesney B., Hay B. E. 1992; Herpesvirus associated with mortalities among hatchery-reared larval Pacific oysters Crassostrea gigas . Dis Aquat Organ 12:135–142 [CrossRef]
    [Google Scholar]
  35. Hine P. M., Wesney B., Besant P. 1998; Replication of a herpes-like virus in larvae of the flat oyster Tiostrea chilensis at ambient temperatures. Dis Aquat Organ 32:161–171 [CrossRef]
    [Google Scholar]
  36. Inoue N., Dambaugh T. R., Rapp J. C., Pellett P. E. 1994; Alphaherpesvirus origin-binding protein homolog encoded by human herpesvirus 6B, a betaherpesvirus, binds to nucleotide sequences that are similar to ori regions of alphaherpesviruses. J Virol 68:4126–4136
    [Google Scholar]
  37. Jakob N. J., Müller K., Bahr U., Darai G. 2001; Analysis of the first complete DNA sequence of an invertebrate iridovirus: coding strategy of the genome of Chilo iridescent virus. Virology 286:182–196 [CrossRef]
    [Google Scholar]
  38. Klinedinst D. K., Challberg M. D. 1994; Helicase–primase complex of herpes simplex virus type 1: a mutation in the UL52 subunit abolishes primase activity. J Virol 68:3693–3701
    [Google Scholar]
  39. Le Deuff R.-M., Renault T. 1999; Purification and partial genome characterization of a herpes-like virus infecting the Japanese oyster, Crassostrea gigas . J Gen Virol 80:1317–1322
    [Google Scholar]
  40. Le Deuff R.-M., Nicolas J. L., Renault T., Cochennec N. 1994; Experimental transmission of a herpes-like virus to axenic larvae of Pacific oyster, Crassostrea gigas . Bull Eur Assoc Fish Pathol 14:69–72
    [Google Scholar]
  41. Lipart C., Renault T. 2002; Herpes-like virus detection in infected Crassostrea gigas spat using DIG-labelled probes. J Virol Methods 101:1–10 [CrossRef]
    [Google Scholar]
  42. McGeoch D. J. 1990; Protein sequence comparisons show that the ‘pseudoproteases' encoded by poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. Nucleic Acids Res 18:4105–4110 [CrossRef]
    [Google Scholar]
  43. McGeoch D. J., Dolan A., Ralph A. C. 2000; Toward a comprehensive phylogeny for mammalian and avian herpesviruses. J Virol 74:10401–10406 [CrossRef]
    [Google Scholar]
  44. Miller L. K. 1999; An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol 9:323–328 [CrossRef]
    [Google Scholar]
  45. Minson A. C., Davison A., Eberle R., Desrosiers R. C., Fleckenstein B., McGeoch D. J., Pellett P. E., Roizman B., Studdert M. J. 2000; Family Herpesviridae . In Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses pp  203–225 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
    [Google Scholar]
  46. Mocarski E. S., Roizman B. 1982; Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31:89–97 [CrossRef]
    [Google Scholar]
  47. Newcomb W. W., Trus B. L., Booy F. P., Steven A. C., Wall J. S., Brown J. C. 1993; Structure of the herpes simplex virus capsid: molecular composition of the pentons and the triplexes. J Mol Biol 232:499–511 [CrossRef]
    [Google Scholar]
  48. Newcomb W. W., Trus B. L., Cheng N., Steven A. C., Sheaffer A. K., Tenney D. J., Weller S. K., Brown J. C. 2000; Isolation of herpes simplex virus procapsids from cells infected with a protease-deficient mutant virus. J Virol 74:1663–1673 [CrossRef]
    [Google Scholar]
  49. Nicolas J. L., Comps M., Cochennec N. 1992; Herpes-like virus infecting Pacific-oyster larvae, Crassostrea gigas . Bull Eur Assoc Fish Pathol 12:11–13
    [Google Scholar]
  50. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  51. Nigro O., Yu G., Aguirre A. A., Lu Y. 2004; Sequencing and characterization of the full-length gene encoding the single-stranded DNA binding protein of a novel Chelonian herpesvirus. Arch Virol 149:337–347 [CrossRef]
    [Google Scholar]
  52. Pasquier C., Hamodrakas S. J. 1999; An hierarchical artificial neural network system for the classification of transmembrane proteins. Protein Eng 12:631–634 [CrossRef]
    [Google Scholar]
  53. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  54. Quackenbush S. L., Work T. M., Balazs G. H. 8 other authors 1998; Three closely related herpesviruses are associated with fibropapillomatosis in marine turtles. Virology 246:392–399 [CrossRef]
    [Google Scholar]
  55. Renault T. 1998; Infections herpétiques chez les invertébrés: détection de virus de type herpès chez les mollusques bivalves marins. Virologie 2:401–403
    [Google Scholar]
  56. Renault T., Arzul I. 2001; Herpes-like virus infections in hatchery-reared bivalve larvae in Europe: specific viral DNA detection by PCR. J Fish Dis 24:161–167 [CrossRef]
    [Google Scholar]
  57. Renault T., Cochennec N., Le Deuff R.-M., Chollet B. 1994a; Herpes-like virus infecting Japanese oyster ( Crassostrea gigas ) spat. Bull Eur Assoc Fish Pathol 14:64–66
    [Google Scholar]
  58. Renault T., Le Deuff R.-M., Cochennec N., Maffart P. 1994b; Herpesviruses associated with mortalities among Pacific oyster, Crassostrea gigas , in France – comparative study. Rev Med Vet 145:735–742
    [Google Scholar]
  59. Renault T., Le Deuff R.-M., Cochennec N., Chollet B., Maffart P. 1995; Herpes-like viruses associated with high mortality levels in larvae and spat of Pacific oysters, Crassostrea gigas : a comparative study, the thermal effects on virus detection in hatchery-reared larvae, reproduction of the disease in axenic larvae. Vet Res 26:539–543
    [Google Scholar]
  60. Renault T., Le Deuff R.-M., Chollet B., Cochennec N., Gérard A. 2000a; Concomitant herpes-like virus infections in hatchery-reared larvae and nursery-cultured spat Crassostrea gigas and Ostrea edulis . Dis Aquat Organ 42:173–183 [CrossRef]
    [Google Scholar]
  61. Renault T., Le Deuff R.-M., Lipart C., Delsert C. 2000b; Development of a PCR procedure for the detection of a herpes-like virus infecting oysters in France. J Virol Methods 88:41–50 [CrossRef]
    [Google Scholar]
  62. Renault T., Lipart C., Arzul I. 2001; A herpes-like virus infects a non-ostreid bivalve species: virus replication in Ruditapes philippinarum larvae. Dis Aquat Organ 45:1–7 [CrossRef]
    [Google Scholar]
  63. Staden R., Beal K. F., Bonfield J. K. 2000; The Staden package, 1998. Methods Mol Biol 132:115–130
    [Google Scholar]
  64. Stasiak K., Demattei M.-V., Federici B. A., Bigot Y. 2000; Phylogenetic position of the Diadromus pulchellus ascovirus DNA polymerase among viruses with large double-stranded DNA genomes. J Gen Virol 81:3059–3072
    [Google Scholar]
  65. Steven A. C., Spear P. G. 1997; Herpesvirus capsid assembly and envelopment. In Structural Biology of Viruses pp  312–351 Edited by Chiu W., Burnett R. M., Garcea R. L. Oxford: Oxford University Press;
    [Google Scholar]
  66. Stow N. D., McMonagle E. C. 1983; Characterization of the TRS/IRS origin of DNA replication of herpes simplex virus type 1. Virology 130:427–438 [CrossRef]
    [Google Scholar]
  67. Taylor P. 1986; A computer program for translating DNA sequences into protein. Nucleic Acids Res 14:437–441 [CrossRef]
    [Google Scholar]
  68. Teschke C. M., McGough A., Thuman-Commike P. A. 2003; Penton release from P22 heat-expanded capsids suggests importance of stabilizing penton–hexon interactions during capsid maturation. Biophys J 84:2585–2592 [CrossRef]
    [Google Scholar]
  69. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  70. Trus B. L., Newcomb W. W., Booy F. P., Brown J. C., Steven A. C. 1992; Distinct monoclonal antibodies separately label the hexons or the pentons of herpes simplex virus capsid. Proc Natl Acad Sci U S A 89:11508–11512 [CrossRef]
    [Google Scholar]
  71. Trus B. L., Booy F. P., Newcomb W. W., Brown J. C., Homa F. L., Thomsen D. R., Steven A. C. 1996; The herpes simplex virus procapsid: structure, conformational changes upon maturation, and roles of the triplex proteins VP19c and VP23 in assembly. J Mol Biol 263:447–462 [CrossRef]
    [Google Scholar]
  72. Trus B. L., Gibson W., Cheng N., Steven A. C. 1999; Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. J Virol 73:2181–2192
    [Google Scholar]
  73. Trus B. L., Heymann J. B., Nealon K., Cheng N., Newcomb W. W., Brown J. C., Kedes D. H., Steven A. C. 2001; Capsid structure of Kaposi's sarcoma-associated herpesvirus, a gammaherpesvirus, compared to those of an alphaherpesvirus, herpes simplex virus type 1, and a betaherpesvirus, cytomegalovirus. J Virol 75:2879–2890 [CrossRef]
    [Google Scholar]
  74. Une Y., Murakami M., Uemura K., Fujitani H., Ishibashi T., Nomura Y. 2000; Polymerase chain reaction (PCR) for the detection of herpesvirus in tortoises. J Vet Med Sci 62:905–907 [CrossRef]
    [Google Scholar]
  75. Weller S. K., Spadaro A., Schaffer J. E., Murray A. W., Maxam A. M., Schaffer P. A. 1985; Cloning, sequencing, and functional analysis of ori L, a herpes simplex virus type 1 origin of DNA synthesis. Mol Cell Biol 5:930–942
    [Google Scholar]
  76. Weststrate M. W., Geelen J. L. M. C., van der Noordaa J. 1980; Human cytomegalovirus DNA: physical maps for restriction endonucleases Bgl II, Hin dIII and Xba I. J Gen Virol 49:1–21 [CrossRef]
    [Google Scholar]
  77. Wingfield P. T., Stahl S. J., Thomsen D. R., Homa F. L., Booy F. P., Trus B. L., Steven A. C. 1997; Hexon-only binding of VP26 reflects differences between the hexon and penton conformations of VP5, the major capsid protein of herpes simplex virus. J Virol 71:8955–8961
    [Google Scholar]
  78. Yáñez R. J., Rodríguez J. M., Nogal M. L., Yuste L., Enríquez C., Rodriguez J. F., Viñuela E. 1995; Analysis of the complete nucleotide sequence of African swine fever virus. Virology 208:249–278 [CrossRef]
    [Google Scholar]
  79. Yu Q., Hu N., Lu Y., Nerurkar V. R., Yanagihara R. 2001; Rapid acquisition of entire DNA polymerase gene of a novel herpesvirus from green turtle fibropapilloma by a genomic walking technique. J Virol Methods 91:183–195 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80382-0
Loading
/content/journal/jgv/10.1099/vir.0.80382-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error