Skip to main content
Log in

Geological evidence of oxygenic photosynthesis and the biotic response to the 2400-2200 Ma “Great Oxidation Event”

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Fossil evidence of photosynthesis, documented in the geological record by microbially laminated stromatolites, microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends to ∼3500 million years ago. Such evidence, however, does not resolve the time of origin of oxygenic photosynthesis from its anoxygenic photosynthetic evolutionary precursor. Though it is evident that cyanobacteria, the earliest-evolved O2-producing photoautotrophs, existed before ∼2450 million years ago — the onset of the “Great Oxidation Event” (GOE) that forever altered Earth’s environment — O2-producing photosynthesis seems certain to have originated hundreds of millions of years earlier. How did Earth’s biota respond to the GOE? Four lines of evidence are here suggested to reflect this major environmental transition: (1) rRNA phylogeny-correlated metabolic and biosynthetic pathways document evolution from an anaerobic (pre-GOE) to a dominantly oxygen-requiring (post-GOE) biosphere; (2) consistent with the rRNA phylogeny of cyanobacteria, their fossil record evidences the immediately post-GOE presence of cyanobacterial nostocaceans characterized by specialized cells that protect their oxygen-labile nitrogenase enzyme system; (3) the earliest known fossil eukaryotes, obligately aerobic phytoplankton and putative algae, closely post-date the GOE; and (4) microbial sulfuretums are earliest known from rocks deposited during and immediately after the GOE, their apparent proliferation evidently spurred by an increase of environmental oxygen and a resulting upsurge of metabolically useable sulfate and nitrate. Though the biotic response to the GOE is a question new to paleobiology that is yet largely unexplored, additional evidence of its impact seems certain to be uncovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

adenosine triphosphate

GOE:

Great Oxidation Event

Ma:

millions of years

PAL:

present atmospheric level

References

  1. Schopf, J. W. (1992) in The Proterozoic Biosphere, a Multidisciplinary Study (Schopf, J. W., and Klein, C., eds.) Cambridge University Press, New York, pp. 5–39.

  2. Schopf, J. W. (1993) Science, 260, 640–646.

    Article  CAS  PubMed  Google Scholar 

  3. Schopf, J. W. (2006) Phil. Trans. Roy. Soc. B, 361, 869–885.

    Article  CAS  Google Scholar 

  4. Schopf, J. W., Kudryavtsev, A. B., Czaja, A. D., and Tripathi, A. B. (2007) Precam. Res., 158, 141–155.

    Article  CAS  Google Scholar 

  5. Schopf, J. W., and Kudryavtsev, A. B. (2012) Gondwana Res., 39, 761–771.

    Article  Google Scholar 

  6. Mojzsis, S., Arrenhius, G., McKeegan, K. D., Nutman, A. P., and Friend, C. R. L. (1996) Nature, 384, 55–59.

    Article  CAS  PubMed  Google Scholar 

  7. McKeegan, K. D., Kudryavtsev, A. B., and Schopf, J. W. (2007) Geology, 35, 591–594.

    Article  Google Scholar 

  8. Oparin, A. I. (1938) The Origin of Life, McMillan, New York.

    Google Scholar 

  9. Schopf, J. W. (1999) Cradle of Life, The Discovery of Earth’s Earliest Fossils, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  10. Blankenship, R. E. (1992) Photosynth. Res., 33, 91–111.

    Article  CAS  Google Scholar 

  11. Blankenship, R. E., and Hartman, H. (1998) Trends Biochem. Sci., 23, 94–97.

    Article  CAS  PubMed  Google Scholar 

  12. Schopf, J. W. (1996) in Evolution and the Molecular Revolution (Marshall, C. R., and Schopf, J. W., eds.) Jones and Bartlett, Boston, pp. 73–105.

  13. Darwin, C. R. (1859) On the Origin of Species by Means of Natural Selection, John Murray, London.

    Google Scholar 

  14. Barghoorn, E. S., and Tyler, S. A. (1965) Science, 147, 563–577.

    Article  CAS  PubMed  Google Scholar 

  15. Cloud, P. E. (1965) Science, 148, 27–45.

    Article  PubMed  Google Scholar 

  16. Barghoorn, E. S., and Schopf, J. W. (1965) Science, 150, 337–339.

    Article  CAS  PubMed  Google Scholar 

  17. Schopf, J. W. (1968) J. Paleontol., 42, 651–688.

    Google Scholar 

  18. Schopf, J. W., and Bottjer, D. J. (eds.) (2009) World Summit on Ancient Microscopic Fossils, Special Issue, Precam. Res., 173 (Nos. 1–4).

    Google Scholar 

  19. Garrels, R. M., and Mackenzie, F. T. (1971) Evolution of Sedimentary Rocks, Norton, New York.

    Google Scholar 

  20. Holland, H. D. (2002) Geochim. Cosmochim. Acta, 66, 3811–3826.

    Article  CAS  Google Scholar 

  21. Canfield, D. E. (2005) Annu. Rev. Earth Planet. Sci., 33, 1–36.

    Article  CAS  Google Scholar 

  22. Farquhar, J., Bao, H., and Thiemens, M. (2000) Science, 289, 756–759.

    Article  CAS  PubMed  Google Scholar 

  23. Farquhar, J., Peterson, M., Johnson, D. T., Strauss, H., Masterson, A., Weichert, U., and Kaufman, A. J. (2007) Nature, 449, 706–709.

    Article  CAS  PubMed  Google Scholar 

  24. Hofmann, H. J. (2000) in Microbial Sediments (Riding, R. E., and Awramik, S. M., eds.) Springer-Verlag, Berlin, pp. 315–327.

  25. Hofmann, H. J., Grey, K., Hickman, A. H., and Thorpe, R. I. (1999) Geol. Soc. Am. Bull., 111, 1256–1262.

    Article  Google Scholar 

  26. Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P., and Burch, I. W. (2006) Nature, 441, 714–718.

    Article  CAS  PubMed  Google Scholar 

  27. Grotzinger, J. P., and Knoll, A. H. (1999) Annu. Rev. Earth Planet. Sci., 27, 313–358.

    Article  CAS  PubMed  Google Scholar 

  28. Butterfield, N. J. (2009) Precam. Res., 173, 201–211.

    Article  CAS  Google Scholar 

  29. Schopf, J. W. (2012) in Ecology of Cyanobacteria II, Their Diversity in Space and Time (Whitton, B. A., ed.) Springer-Verlag, Berlin, pp. 15–36.

  30. Schopf, J. W. (1994) Proc. Natl. Acad. Sci. USA, 91, 6735–6742.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Klein, C., Beukes, N., and Schopf, J. W. (1987) Precam. Res., 6, 81–94.

    Article  Google Scholar 

  32. Lanier, W. P. (1986) Palaios, 1, 525–542.

    Article  Google Scholar 

  33. Knoll, A. H., and Barghoorn, E. S. (1977) Science, 198, 396–398.

    Article  CAS  PubMed  Google Scholar 

  34. Schopf, J. W., Kudryavtsev, A. B., Sugitani, K., and Walter, M. R. (2010) Precam. Res., 179, 191–205.

    Article  Google Scholar 

  35. Schopf, J. W., and Packer, B. M. (1987) Science, 237, 70–73.

    Article  CAS  PubMed  Google Scholar 

  36. Schopf, J. W. (1992) in The Proterozoic Biosphere, a Multidisciplinary Study (Schopf, J. W., and Klein, C., eds.) Cambridge University Press, New York, pp. 195–218.

  37. Summons, R. E. (1992) in The Proterozoic Biosphere, a Multidisciplinary Study (Schopf, J. W., and Klein, C., eds.) Cambridge University Press, New York, pp. 101–115.

  38. Bloeser, B. (1985) J. Paleontol., 59, 741–765.

    Google Scholar 

  39. Bloeser, B., Schopf, J. W., Horodyski, R. J., and Breed, W. J. (1977) Science, 195, 676–679.

    Article  CAS  PubMed  Google Scholar 

  40. Schopf, J. W. (1992) in The Proterozoic Biosphere, a Multidisciplinary Study (Schopf, J. W., and Klein, C., eds.) Cambridge University Press, New York, pp. 583–600.

  41. Porter, S. M., and Knoll, A. H. (2000) Paleobiology, 26, 360–385.

    Article  Google Scholar 

  42. Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E. (1999) Science, 285, 1033–1036.

    Article  CAS  PubMed  Google Scholar 

  43. Schopf, J. W. (1978) Sci. Amer., 239, 110–138.

    Article  CAS  PubMed  Google Scholar 

  44. Summons, R. E., Bradley, A. S., Janke, L. L., and Waldbauer, J. R. (2006) Phil. Trans. Roy. Soc. B, 361, 951–968.

    Article  CAS  Google Scholar 

  45. Park, R., and Epstein, S. (1963) Geochim. Cosmochim. Acta, 21, 110–115.

    Article  Google Scholar 

  46. Hoering, T. C. (1967) in Researches in Geochemistry (Abelson, P. H., ed.) Vol. 2, Wiley, New York, pp. 87–111.

  47. Strauss, H., and Moore, T. B. (1992) in The Proterozoic Biosphere, a Multidisciplinary Study (Schopf, J. W., and Klein, C., eds.) Cambridge University Press, New York, pp. 709–798.

  48. Hayes, J. M., Kaplan, I. R., and Wedeking, K. M. (1983) in Earth’s Earliest Biosphere, Its Origin and Evolution (Schopf, J. W., ed.) Princeton University Press, Princeton, NJ, pp. 93–134.

  49. Hayes, J. M., DesMarais, D. J., Lambert, I. A., Strauss, H., and Summons, R. E. (1992) in The Proterozoic Biosphere, a Multidisciplinary Study (Schopf, J. W., and Klein, C., eds.) Cambridge University Press, New York, pp. 81–134.

  50. House, C. H., Schopf, J. W., McKeegan, K. D., Coath, C. D., Harrison, T. M., and Stetter, K. O. (2000) Geology, 28, 707–710.

    Article  CAS  PubMed  Google Scholar 

  51. House, C. H., Schopf, J. W., and Stetter, K. O. (2003) Org. Geochem., 34, 345–356.

    Article  CAS  Google Scholar 

  52. Hayes, J. M. (1983) in Earth’s Earliest Biosphere, Its Origin and Evolution (Schopf, J. W., ed.) Princeton University Press, Princeton, NJ, pp. 291–301.

  53. Schopf, J. W. (1994) Early Life on Earth (Bengtson, S., ed.) Columbia University Press, New York, pp. 193–206.

  54. Holland, H. D. (2009) Geochim. Cosmochim. Acta, 73, 5241–5255.

    Article  CAS  Google Scholar 

  55. Fawley, M. W. (1991) J. Phycol., 27, 544–548.

    Article  CAS  Google Scholar 

  56. Graham, J. E., and Bryant, D. A. (2009) Bacteriology, 2009, 3292–3300.

    Article  Google Scholar 

  57. Takaichi, S. (2011) Marine Drugs, 9, 1101–1118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Giovannoni, S. J., Turner, S., Olsen, G. J., Barns, S., Lane, D. J., and Pace, N. R. (1988) J. Bacteriol., 170, 3584–3592.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Schopf, J. W., Kudryavtsev, A. B., and Sergeev, V. N. (2010) J. Paleol., 84, 402–416.

    Article  Google Scholar 

  60. Tomitani, A., Knoll, A. H., Cavanaugh, C. M., and Ohno, T. (2006) Proc. Natl. Acad. Sci. USA, 103, 5442–5447.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Lamb, D. M., Awramik, S. M., Chapman, D. J., and Zhu, S. (2009) Precam. Res., 173, 93–104.

    Article  CAS  Google Scholar 

  62. Sharma, M., and Shukla, Y. (2009) Precam. Res., 173, 105–122.

    Article  CAS  Google Scholar 

  63. Han, T., and Runnegar, B. (1992) Science, 257, 232–235.

    Article  CAS  PubMed  Google Scholar 

  64. Van Kranendonk, M. J., Schopf, J. W., Grice, K., Walter, M. R., Pages, A., Kudryavtsev, A. B., Gallardo, V. A., Espinoza, C., Melendez, I., and Lepland, A. (2012) Astrobiology Science Conference 2012, Atlanta, Georgia, USA, Abstract #2084, available online at: http://abscicon2012.arc.nasa.gov/abstracts.

    Google Scholar 

  65. Hofmann, H. J., and Schopf, J. W. (1983) in Earth’s Earliest Biosphere, Its Origin and Evolution (Schopf, J. W., ed.) Princeton University Press, Princeton, NJ, pp. 321–360.

  66. Wilson, J. P., Fischer, W. W., Johnston, D. T., Knoll, A. H., Grotzinger, J. P., Walter, M. R., McNaughton, N. J., Simon, M., Abelson, J., Schrag, D. P., Summons, R., Allwood, A., Andres, M., Gammon, C., Garvi, J., Sky, R., Schweizer, M., and Watters, W. A. (2010) Precam. Res., 179, 135–149.

    Article  CAS  Google Scholar 

  67. Gallardo, V. A., and Espinoza, C. (2007) Int. Microbiol., 10, 97–102.

    PubMed  Google Scholar 

  68. Gallardo, V. A., and Espinoza, C. (2007) in Instruments, Methods, and Missions for Astrobiology X (Hoover, R. B., Levin, G. V., Rozanov, A. Y., and Davies, P. C., eds.) Proc. SPIE 66941, pp. 66941H-1–66941H-11.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. William Schopf.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 3, pp. 223–238.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schopf, J.W. Geological evidence of oxygenic photosynthesis and the biotic response to the 2400-2200 Ma “Great Oxidation Event”. Biochemistry Moscow 79, 165–177 (2014). https://doi.org/10.1134/S0006297914030018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914030018

Key words

Navigation