Skip to main content
Log in

Heterologous Expression of Thermogutta terrifontis Endo-Xanthanase in Penicillium verruculosum, Isolation and Primary Characterization of the Enzyme

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Heterologous endo-xanthanase (EX) from the thermophilic planktomycete Thermogutta terrifontis strain was obtained using Penicillium verruculosum 537 (ΔniaD) expression system with the cellobiohydrolase 1 gene promoter. Homogeneous EX with a molecular weight of 23.7 kDa (pI 6.5) was isolated using liquid chromatography methods. This xanthan degrading enzyme also possesses the enzymatic activity towards CM-cellulose, β-glucan, curdlan, lichenan, laminarin, galactomannan, xyloglucan but not towards p-nitrophenyl derivatives of β-D-glucose, mannose and cellobiose. The temperature and pH optima of EX were 55°C and 4.0, respectively; the enzyme exhibited 90% of its maximum activity in the temperature range 50-60°C and pH 3-5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Scheme
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

CF:

culture fluid

EP:

enzyme preparation

EX:

endo-xanthanase

pNP:

para-nitrophenyl derivatives

References

  1. Janson, P., Kenne, L., and Lindberg, B. (1975) Structure of extracellular polysaccharide from Xanthamonas campestris, Carbohydr. Res., 45, 275-282, https://doi.org/10.1016/s0008-6215(00)85885-1.

    Article  Google Scholar 

  2. Santos, V. E., Casas, J. A., and Go, E. (2000) Xanthan gum: production, recovery, and properties, Biotechnol. Adv., 18, 549-579, https://doi.org/10.1016/s0734-9750(00)00050-1.

    Article  PubMed  Google Scholar 

  3. Benny, I. S., Gunasekar, V., and Ponnusami, V. (2014) Review on application of xanthan gum in drug delivery, Int. J. Pharmtech Res., 6, 1322-1326.

    CAS  Google Scholar 

  4. Nankai, H., Hashimoto, W., Miki, H., Kawai, S., and Murata, K. (1999) Microbial system for polysaccharide depolymerization: enzymatic route for xanthan depolymerization by Bacillus sp. strain GL1, Appl. Environ. Microbiol., 65, 2520-2526.

    Article  CAS  Google Scholar 

  5. Liu, H., Huang, Ch., Dong, W., Du, Y., Bai, X., and Li, X. (2005) Biodegradation of xanthan by newly isolated Cellulomonas sp. LX, releasing elicitor-active xantho-oligosaccharides-induced phytoalexin synthesis in soybean cotyledons, Process Biochemistry, 40, 3701-3706.

    Article  CAS  Google Scholar 

  6. Cadmus, M., Jackson, L., Kermita, A., Burton, E., Plattner, R., and Slodki, M. (1981) Biodegradation of xanthan gum by Bacillus sp., Appl. Environ. Microbiol., 44, 5-11.

    Article  Google Scholar 

  7. Elcheninov, A. G., Menzel, P., Gudbergsdottir, S. R., Slesarev, A. I., Kadnikov, V. V., et al. (2017) Sugar metabolism of the first thermophilic planctomycete Thermogutta terrifontis: comparative genomic and transcriptomic approaches, Front. Microbiol., 8, 2140, https://doi.org/10.3389/fmicb.2017.02140.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang, F., Li, H., Sun, J., Guo, X., Zhang, X., et al. (2019) Novel endotype xanthanase from xanthan-degrading Microbacterium sp. strain XT11, Appl. Environ. Microbiol., 85, https://doi.org/10.1128/AEM.01800-18.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Moroz, O. V., Jensen, P. F., McDonald, S. P., McGregor, N., Blagova, E., et al. (2018) Structural dynamics and catalytic properties of a multi-modular xanthanase, ACS Catal., 8, 6021-6034.

    Article  CAS  Google Scholar 

  10. Slobodkina, G. B., Kovaleva, O. L., Miroshnichenko, M. L., Slobodkin, A. I., Kolganova, T. V., et al. (2014) Thermogutta terrifontis gen. nov., sp. nov. and Thermogutta hypogea sp. nov., thermophilic anaerobic representatives of the phylum Planctomycetes, Int. J. System. Evol. Microbiol., 65, 760-765, https://doi.org/10.1099/ijs.0.000009.

    Article  CAS  Google Scholar 

  11. Aslanidis, C., and de Jong, P. J. (1990) Ligation-independent cloning of PCR products (LIC-PCR), Nucleic Acids Res., 18, 6069-6074.

    Article  CAS  Google Scholar 

  12. Sambrook, J., and Russell, D. (2001) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

  13. Aleksenko, A., Makarova, N., Nikolaev, I., and Clutterbuc, K. A. (1995) Integrative and replicative transformation of Penicillium canescens with a heterologous nitrate-reductase gene, Curr. Genet., 28, 474-478.

    Article  CAS  Google Scholar 

  14. Dawson, R. M. C., Elliot, D. C., Elliot, W. H., and Jones, K. V. (1986) Data for Biochemical Research, Oxford: Oxford University Press, 3rd Edn.

  15. Somogyi, M. (1952) A new reagent for the determination of sugars, J. Biol. Chem., 195, 19-23.

    Article  CAS  Google Scholar 

  16. Sinitsyn, A. P., Gusakov, A. V., and Chernoglazov, V. M. (1995) Bioconversion of Lignocellulose Materials, Izdatelstvo MGU, Moscow.

Download references

Acknowledgments

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (GZ 0104-2019-0009). The work was carried out using scientific equipment of the Center for Collective Use “Industrial Biotechnology” and the Center for Collective Use “Bioengineering” of the Federal Research Center of Biotechnology of the Russian Academy of Sciences. The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury A. Denisenko.

Ethics declarations

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (GZ 0104-2019-0009). The work was carried out using scientific equipment of the Center for Collective Use “Industrial Biotechnology” and the Center for Collective Use “Bioengineering” of the Federal Research Center of Biotechnology of the Russian Academy of Sciences. The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Published in Russian in Biokhimiya, 2021, Vol. 86, No. 4, pp. 575-583, https://doi.org/10.31857/S0320972521040096.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisenko, Y.A., Korotkova, O.G., Zorov, I.N. et al. Heterologous Expression of Thermogutta terrifontis Endo-Xanthanase in Penicillium verruculosum, Isolation and Primary Characterization of the Enzyme. Biochemistry Moscow 86, 489–495 (2021). https://doi.org/10.1134/S000629792104009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792104009X

Keywords

Navigation