Skip to main content
Log in

Capacity of Azospirillum thiophilum for lithotrophic growth coupled to oxidation of reduced sulfur compounds

  • Experimental Articles
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Capacity for lithotrophic growth coupled to oxidation of reduced sulfur compounds was revealed in an Azospirillum strain, A. thiophilum BV-ST. Oxygen concentration in the medium was the major factor determining the type of energy metabolism (organotrophic or lithotrophic) in the presence of thiosulfate. Under aerobic conditions, metabolism of A. thiophilum BV-ST was organoheterotrophic, with thiosulfate oxidation to tetrathionate resulting from the interaction with reactive oxygen species, mostly H2O2, which was formed in the electron transport chain in the course of oxidation of organic electron donors. Under microaerobic conditions (2 mg/L O2 in liquid medium), A. thiophilum BV-ST carried out lithoheterotrophic (mixotrophic) metabolism; enzymes of the dissimilatory type of sulfur metabolism were responsible for thiosulfate oxidation to tetrathionate and sulfate. Two enzyme systems were found in the cells: thiosulfate dehydrogenase, which catalyzes incomplete oxidation of thiosulfate to tetrathionate and the thiosulfate-oxidizing Sox enzyme complex, which is involved in complete oxidation of thiosulfate to sulfate. The genetic determinant of a Sox complex component in A. thiophilum BV-ST was revealed. The soxB gene was found, and its expression under microaerobic conditions was observed to increase 32-fold compared to aerobic cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ignatov, I.I., Biological nitrogen fixation and nitrogen fixers, Soros. Obraz. Zh., 1998, no. 9, pp. 28–33.

    Google Scholar 

  2. Dekhil, B., Cahill, M., Stackebrandt, E., and Sly, L., Transfer of Conglomeromonas largomobile subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov. and elevation of Conglomeromonas largomobilis subsp. paroensis to the new type species of Conglomeromonas, Conglomeromonas paroensis sp. nov., Syst. Appl. Microbiol., 1997, vol. 20, pp. 72–77.

    Article  Google Scholar 

  3. Sly, L. and Stackebrandt, E., Description of Scermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 541–544.

    Article  Google Scholar 

  4. Lavrinenko, K., Chernousova, E., Gridneva, E., Dubinina, G., Akimov, V., Kuever, J., Lysenko, A., and Grabovich, M., Azospirillum thiophilum sp. nov., a novel diazotrophic bacterium isolated from a sulfide spring, Int. J. Syst. Evol. Microbiol., 2010, vol. 60, pp. 2832–2837.

    Article  PubMed  CAS  Google Scholar 

  5. Hartmann, A. and Burris, R.H., Regulation of nitrogenase activity by oxygen in Azospirillum brasilense and Azospirillum lipoferum, Int. J. Syst. Bacteriol., 1987, vol. 169, pp. 944–948.

    CAS  Google Scholar 

  6. Caraway, B. and Krieg, N., Aerotaxis in Spirillum volutans, Can. J. Microbiol., 1974, vol. 20, pp. 1367–1377.

    Article  CAS  Google Scholar 

  7. Pfennig, N. and Lippert, K.D., Uber das Vitamin B12-bedurfuis phototropher Schwefelbakterien, Arch. Microbiol., 1966, vol. 55, no. 1, pp. 245–256.

    CAS  Google Scholar 

  8. Reznikov, A.A., Mulikovskaya, E.P., and Sokolov, V.Yu., Metody analiza prirodnykh vod (Methods for Analysis of Natural Waters), Moscow: Gosgeoltekhizdat, 1970.

    Google Scholar 

  9. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    PubMed  CAS  Google Scholar 

  10. Bredford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  Google Scholar 

  11. Hensen, D., Sperling, D., Trüper, H.G., Brune, D.C., and Dahl, C., Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum, Mol. Microbiol., 2006, vol. 62, no.3, pp. 794–810.

    Article  PubMed  CAS  Google Scholar 

  12. Petushkova, Yu.P. and Ivanovskii, R.N., Sulfite oxidation by Thiocapsa roseopersicina, Mikrobiologiya, 1976, vol. 45, no. 4, pp. 592–597.

    CAS  Google Scholar 

  13. Peck, H.D. and Deacon, T.E., Studies of adenosine-5′-phophosulfate-reductase from Desulfovibrio desulfuricans and Thiobacillus denitrificans, J. Biochem., 1968, vol. 97, pp. 651–657.

    Google Scholar 

  14. Shol’ts, K.F. and Ostrovskii, D.N., Cell for amperometric oxygen determination, in Metody sovremennoi biokhimii (Methods in Modern Biochemistry), Moscow, 1975, pp. 52–58.

    Google Scholar 

  15. Meyer, B. and Kuever, J., Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5′-phosphosulfate reductase encoding genes (aprBA) among sulfur-oxidizing prokaryotes, Microbiology (UK), 2007, vol. 153, pp. 3478–3498.

    Article  CAS  Google Scholar 

  16. Meyer, B., Imhoff, J.F., and Kuever, J., Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria—evolution of the Sox sulfur oxidation enzyme system, Environ. Microbiol., 2007, vol. 9, no. 12, pp. 2957–2977.

    Article  PubMed  CAS  Google Scholar 

  17. Pham, V.H., Yong, J.J., Park, S.J., Yoon, D.N, Chung, W.H., and Rhee, S.K., Molecular analysis of the diversity of the sulfide: quinone reductase (sqr) gene in sediment environments, Microbiology (UK), 2008, vol. 154, pp. 3112–3121.

    Article  CAS  Google Scholar 

  18. Loy A., Duller S., Baranyi C., Mußmann M., Ott J., Sharon I., Béjà O., Le Paslier D., Dahl C., and Wagner M. Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes, Environ. Microbiol., 2009, vol. 11, no. 2, pp. 289–299.

    Article  PubMed  CAS  Google Scholar 

  19. Friedrich, C.G., Rother, D., Bardischewsky, F., Quentmeier, A., and Fischer, J., Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?, Appl. Environ. Microbiol. 2001, vol. 67, pp. 2873–2882.

    Article  PubMed  CAS  Google Scholar 

  20. Dubinina, G.A., Grabovich, M.Yu., Churikova, V.V., Pashkov, A.N., Chekanova, Yu.A., and Leshcheva, N.V., Production of hydrogen peroxide by Beggiatoa leptomitiformis, Microbiology, 1990, vol. 59, no. 3, pp. 283–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Dubinina or M. Yu. Grabovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frolov, E.N., Belousova, E.V., Lavrinenko, K.S. et al. Capacity of Azospirillum thiophilum for lithotrophic growth coupled to oxidation of reduced sulfur compounds. Microbiology 82, 271–279 (2013). https://doi.org/10.1134/S0026261713030053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261713030053

Keywords

Navigation