1932

Abstract

The plant hormone jasmonate coordinates immune and growth responses to increase plant survival in unpredictable environments. The core jasmonate signaling pathway comprises several functional modules, including a repertoire of COI1–JAZ (CORONATINE INSENSITIVE1–JASMONATE-ZIM DOMAIN) coreceptors that couple jasmonoyl--isoleucine perception to the degradation of JAZ repressors, JAZ-interacting transcription factors that execute physiological responses, and multiple negative feedback loops to ensure timely termination of these responses. Here, we review the jasmonate signaling pathway with an emphasis on understanding how transcriptional responses are specific, tunable, and evolvable. We explore emerging evidence that JAZ proteins integrate multiple informational cues and mediate crosstalk by propagating changes in protein–protein interaction networks. We also discuss recent insights into the evolution of jasmonate signaling and highlight how plant-associated organisms manipulate the pathway to subvert host immunity. Finally, we consider how this mechanistic foundation can accelerate the rational design of jasmonate signaling for improving crop resilience and harnessing the wellspring of specialized plant metabolites.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040047
2018-04-29
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040047.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040047&mimeType=html&fmt=ahah

Literature Cited

  1. Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton GW. 1.  2015. Cues from chewing insects—the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr. Opin. Plant Biol. 26:80–86 [Google Scholar]
  2. Acosta IF, Gasperini D, Chetelat A, Stolz S, Santuari L, Farmer EE. 2.  2013. Role of NINJA in root jasmonate signaling. PNAS 110:15473–78 [Google Scholar]
  3. Aleman F, Yazaki J, Lee M, Takahashi Y, Kim AY. 3.  et al. 2016. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling. Sci. Rep. 6:28941 [Google Scholar]
  4. An C, Li L, Zhai Q, You Y, Deng L. 4.  et al. 2017. Mediator subunit MED25 links the jasmonate receptor to transcriptionally active chromatin. PNAS 114:E8930–39 [Google Scholar]
  5. An JP, Li HH, Song LQ, Su L, Liu X. 5.  et al. 2016. The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiol. Biochem. 108:24–31 [Google Scholar]
  6. Aubert Y, Widemann E, Miesch L, Pinot F, Heitz T. 6.  2015. CYP94-mediated jasmonoyl–isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection. J. Exp. Bot. 66:3879–92 [Google Scholar]
  7. Bai Y, Meng Y, Huang D, Qi Y, Chen M. 7.  2011. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics 98:128–36 [Google Scholar]
  8. Barton KE, Boege K. 8.  2017. Future directions in the ontogeny of plant defence: understanding the evolutionary causes and consequences. Ecol. Lett. 20:403–11 [Google Scholar]
  9. Berenbaum MR, Zangerl AR. 9.  2008. Facing the future of plant–insect interaction research: le retour a la “raison d'être”. Plant Physiol 146:804–11 [Google Scholar]
  10. Bhosale R, Jewell JB, Hollunder J, Koo AJ, Vuylsteke M. 10.  et al. 2013. Predicting gene function from uncontrolled expression variation among individual wild-type Arabidopsis plants. Plant Cell 25:2865–77 [Google Scholar]
  11. Boter M, Golz JF, Gimenez-Ibanez S, Fernandez-Barbero G, Franco-Zorrilla JM, Solano R. 11.  2015. FILAMENTOUS FLOWER is a direct target of JAZ3 and modulates responses to jasmonate. Plant Cell 27:3160–74 [Google Scholar]
  12. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S. 12.  et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304 [Google Scholar]
  13. Bown L, Li Y, Berrue F, Verhoeven JTP, Dufour SC, Bignell DRD. 13.  2017. Coronafacoyl phytotoxin biosynthesis and evolution in the common scab pathogen Streptomyces scabies. Appl. Environ. Microbiol 83:e01169–17 [Google Scholar]
  14. Browse J.14.  2009. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60:183–205 [Google Scholar]
  15. Caarls L, Elberse J, Awwanah M, Ludwig NR, de Vries M. 15.  et al. 2017. Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. PNAS 114:6388–93 [Google Scholar]
  16. Calderon Villalobos LI, Lee S, De Oliveira C, Ivetac A, Brandt W. 16.  et al. 2012. A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat. Chem. Biol. 8:477–85 [Google Scholar]
  17. Campos ML, Kang JH, Howe GA. 17.  2014. Jasmonate-triggered plant immunity. J. Chem. Ecol. 40:657–75 [Google Scholar]
  18. Campos ML, Yoshida Y, Major IT, de Oliveira Ferreira D, Weraduwage SM. 18.  et al. 2016. Rewiring of jasmonate and phytochrome B signalling uncouples plant growth–defense tradeoffs. Nat. Commun. 7:12570 [Google Scholar]
  19. Causier B, Ashworth M, Guo W, Davies B. 19.  2012. The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol 158:423–38 [Google Scholar]
  20. Çevik V, Kidd BN, Zhang P, Hill C, Kiddle S. 20.  et al. 2012. MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis. Plant Physiol 160:541–55 [Google Scholar]
  21. Chen H, Jones AD, Howe GA. 21.  2006. Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Lett 580:2540–46 [Google Scholar]
  22. Chen R, Jiang H, Li L, Zhai Q, Qi L. 22.  et al. 2012. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. Plant Cell 24:2898–916 [Google Scholar]
  23. Chiangga S, Pornkaveerat W, Frank TD. 23.  2016. On a Fitzhugh–Nagumo type model for the pulse-like jasmonate defense response in plants. Math. Biosci. 273:80–90 [Google Scholar]
  24. Chico JM, Fernandez-Barbero G, Chini A, Fernandez-Calvo P, Diez-Diaz M, Solano R. 24.  2014. Repression of jasmonate-dependent defenses by shade involves differential regulation of protein stability of MYC transcription factors and their JAZ repressors in Arabidopsis. Plant Cell 26:1967–80 [Google Scholar]
  25. Chini A, Fonseca S, Chico JM, Fernandez-Calvo P, Solano R. 25.  2009. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins. Plant J 59:77–87 [Google Scholar]
  26. Chini A, Fonseca S, Fernandez G, Adie B, Chico JM. 26.  et al. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–71Describes the discovery of JAZ proteins; also shows that JAZ3 directly interacts with MYC2 (also see 148, 168). [Google Scholar]
  27. Chini A, Gimenez-Ibanez S, Goossens A, Solano R. 27.  2016. Redundancy and specificity in jasmonate signalling. Curr. Opin. Plant Biol. 33:147–56 [Google Scholar]
  28. Chung HS, Cooke TF, Depew CL, Patel LC, Ogawa N. 28.  et al. 2010. Alternative splicing expands the repertoire of dominant JAZ repressors of jasmonate signaling. Plant J 63:613–22 [Google Scholar]
  29. Chung HS, Howe GA. 29.  2009. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. Plant Cell 21:131–45 [Google Scholar]
  30. Chung HS, Koo AJK, Gao X, Jayanty S, Thines B. 30.  et al. 2008. Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146:952–64 [Google Scholar]
  31. Chung HS, Niu Y, Browse J, Howe GA. 31.  2009. Top hits in contemporary JAZ: an update on jasmonate signaling. Phytochemistry 70:1547–59 [Google Scholar]
  32. Cole SJ, Yoon AJ, Faull KF, Diener AC. 32.  2014. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates. Mol. Plant Pathol. 15:589–600 [Google Scholar]
  33. Cuellar Perez A, Nagels Durand A, Vanden Bossche R, De Clercq R, Persiau G. 33.  et al. 2014. The non-JAZ TIFY protein TIFY8 from Arabidopsis thaliana is a transcriptional repressor. PLOS ONE 9:e84891 [Google Scholar]
  34. del Pozo JC, Estelle M. 34.  2000. F-box proteins and protein degradation: an emerging theme in cellular regulation. Plant Mol. Biol. 44:123–28 [Google Scholar]
  35. Demianski AJ, Chung KM, Kunkel BN. 35.  2012. Analysis of Arabidopsis JAZ gene expression during Pseudomonas syringae pathogenesis. Mol. Plant Pathol. 13:46–57 [Google Scholar]
  36. Ellis C, Karafyllidis I, Turner JG. 36.  2002. Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol. Plant Microbe Interact 15:1025–30 [Google Scholar]
  37. Erb M, Meldau S, Howe GA. 37.  2012. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–59 [Google Scholar]
  38. Fang C, Zhang H, Wan J, Wu Y, Li K. 38.  et al. 2016. Control of leaf senescence by an MeOH-jasmonates cascade that is epigenetically regulated by OsSRT1 in rice. Mol. Plant 9:1366–78 [Google Scholar]
  39. Fernandez-Calvo P, Chini A, Fernandez-Barbero G, Chico J-M, Gimenez-Ibanez S. 39.  et al. 2011. The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–15 [Google Scholar]
  40. Figueroa P, Browse J. 40.  2015. Male sterility in Arabidopsis induced by overexpression of a MYC5-SRDX chimeric repressor. Plant J 81:849–60 [Google Scholar]
  41. Fonseca S, Chico JM, Solano R. 41.  2009. The jasmonate pathway: the ligand, the receptor and the core signalling module. Curr. Opin. Plant Biol. 12:539–47 [Google Scholar]
  42. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A. 42.  et al. 2009. (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5:344–50Shows that (+)-7-iso-JA-Ile is the preferred stereoisomer of JA-Ile for promoting interaction between COI1 and JAZ proteins. [Google Scholar]
  43. Fonseca S, Fernandez-Calvo P, Fernandez GM, Diez-Diaz M, Gimenez-Ibanez S. 43.  et al. 2014. bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses. PLOS ONE 9:e86182 [Google Scholar]
  44. Gasperini D, Chauvin A, Acosta IF, Kurenda A, Stolz S. 44.  et al. 2015. Axial and radial oxylipin transport. Plant Physiol 169:2244–54 [Google Scholar]
  45. Gasperini D, Chetelat A, Acosta IF, Goossens J, Pauwels L. 45.  et al. 2015. Multilayered organization of jasmonate signalling in the regulation of root growth. PLOS Genet 11:e1005300 [Google Scholar]
  46. Geerinck J, Pauwels L, De Jaeger G, Goossens A. 46.  2010. Dissection of the one-MegaDalton JAZ1 protein complex. Plant Signal. Behav. 5:1039–41 [Google Scholar]
  47. Geng X, Jin L, Shimada M, Kim MG, Mackey D. 47.  2014. The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta 240:1149–65 [Google Scholar]
  48. Geyter D, Gholami A, Goossens A. 48.  2012. Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17:349–59 [Google Scholar]
  49. Gimenez-Ibanez S, Boter M, Fernandez-Barbero G, Chini A, Rathjen JP, Solano R. 49.  2014. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLOS Biol 12:e1001792 [Google Scholar]
  50. Gimenez-Ibanez S, Boter M, Ortigosa A, Garcia-Casado G, Chini A. 50.  et al. 2017. JAZ2 controls stomata dynamics during bacterial invasion. New Phytol 213:1378–92 [Google Scholar]
  51. Gimenez-Ibanez S, Chini A, Solano R. 51.  2016. How microbes twist jasmonate signaling around their little fingers. Plants 5:9 [Google Scholar]
  52. Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender JL. 52.  2008. Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J. Biol. Chem. 283:16400–7 [Google Scholar]
  53. Goossens J, Fernandez-Calvo P, Schweizer F, Goossens A. 53.  2016. Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol. Biol. 91:673–89 [Google Scholar]
  54. Goossens J, Mertens J, Goossens A. 54.  2017. Role and functioning of bHLH transcription factors in jasmonate signalling. J. Exp. Bot. 68:1333–47 [Google Scholar]
  55. Goossens J, Swinnen G, Vanden Bossche R, Pauwels L, Goossens A. 55.  2015. Change of a conserved amino acid in the MYC2 and MYC3 transcription factors leads to release of JAZ repression and increased activity. New Phytol 206:1229–37 [Google Scholar]
  56. Grunewald W, Vanholme B, Pauwels L, Plovie E, Inze D. 56.  et al. 2009. Expression of the Arabidopsis jasmonate signalling repressor JAZ1/TIFY10A is stimulated by auxin. EMBO Rep 10:923–28 [Google Scholar]
  57. Guo Q, Major IT, Howe GA. 57.  2018. Resolution of growth-defense conflict: mechanistic insights from jasmonate signaling. Curr. Opin. Plant Biol. 44:72–81 [Google Scholar]
  58. Hakata M, Muramatsu M, Nakamura H, Hara N, Kishimoto M. 58.  et al. 2017. Overexpression of TIFY genes promotes plant growth in rice through jasmonate signaling. Biosci. Biotechnol. Biochem. 81:906–13 [Google Scholar]
  59. Han GZ.59.  2017. Evolution of jasmonate biosynthesis and signaling mechanisms. J. Exp. Bot. 68:1323–31 [Google Scholar]
  60. Havko NE, Major IT, Jewell JB, Attaran E, Browse J, Howe GA. 60.  2016. Control of carbon assimilation and partitioning by jasmonate: an accounting of growth–defense balance. Plants 5:7 [Google Scholar]
  61. Heitz T, Smirnova E, Widemann E, Aubert Y, Pinot F, Menard R. 61.  2016. The rise and fall of jasmonate biological activities. Subcell. Biochem. 86:405–26 [Google Scholar]
  62. Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P. 62.  et al. 2012. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 287:6296–306 [Google Scholar]
  63. Hong GJ, Xue XY, Mao YB, Wang LJ, Chen XY. 63.  2012. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24:2635–48 [Google Scholar]
  64. Hou X, Lee LY, Xia K, Yan Y, Yu H. 64.  2010. DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev. Cell 19:884–94 [Google Scholar]
  65. Howe G, Jander G. 65.  2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66 [Google Scholar]
  66. Hu H, He X, Tu L, Zhu L, Zhu S. 66.  et al. 2016. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like. Plant J 88:921–35 [Google Scholar]
  67. Hu Y, Jiang L, Wang F, Yu D. 67.  2013. Jasmonate regulates the INDUCER OF CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–24 [Google Scholar]
  68. Huot B, Yao J, Montgomery BL, He SY. 68.  2014. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7:1267–87 [Google Scholar]
  69. Jewell JB, Browse J. 69.  2016. Epidermal jasmonate perception is sufficient for all aspects of jasmonate-mediated male fertility in Arabidopsis. Plant J 85:634–47 [Google Scholar]
  70. Jiang S, Yao J, Ma K-W, Zhou H, Song J. 70.  et al. 2013. Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors. PLOS Pathog 9:e1003715 [Google Scholar]
  71. Jiang Y, Liang G, Yang S, Yu D. 71.  2014. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid– and auxin-mediated signaling in jasmonic acid–induced leaf senescence. Plant Cell 26:230–45 [Google Scholar]
  72. Jimenez-Aleman GH, Machado RAR, Baldwin IT, Boland W. 72.  2017. JA-Ile-macrolactones uncouple growth and defense in wild tobacco. Org. Biomol. Chem. 15:3391–95 [Google Scholar]
  73. Jung C, Zhao P, Seo JS, Mitsuda N, Deng S, Chua N-H. 73.  2015. PLANT U-BOX PROTEIN10 regulates MYC2 stability in Arabidopsis. Plant Cell 27:2016–31 [Google Scholar]
  74. Katsir L, Chung HS, Koo AJK, Howe GA. 74.  2008. Jasmonate signaling: a conserved mechanism of hormone sensing. Curr. Opin. Plant Biol. 11:428–35 [Google Scholar]
  75. Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA. 75.  2008. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. PNAS 105:7100–5Identifies COI1 as an essential component of the receptor for JA-Ile and coronatine. [Google Scholar]
  76. Kazan K.76.  2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–29 [Google Scholar]
  77. Kazan K, Lyons R. 77.  2014. Intervention of phytohormone pathways by pathogen effectors. Plant Cell 26:2285–309 [Google Scholar]
  78. Kazan K, Manners JM. 78.  2012. JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17:22–31 [Google Scholar]
  79. Kazan K, Manners JM. 79.  2013. MYC2: the master in action. Mol. Plant 6:686–703 [Google Scholar]
  80. Ke J, Ma H, Gu X, Thelen A, Brunzelle JS. 80.  et al. 2015. Structural basis for recognition of diverse transcriptional repressors by the TOPLESS family of corepressors. Sci. Adv. 1:e1500107 [Google Scholar]
  81. Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM. 81.  et al. 2009. The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21:2237–52 [Google Scholar]
  82. Kim JM, To TK, Matsui A, Tanoi K, Kobayashi NI. 82.  et al. 2017. Acetate-mediated novel survival strategy against drought in plants. Nat. Plants 3:17097 [Google Scholar]
  83. Koo AJK.83.  2018. Metabolism of the plant hormone jasmonate: a sentinel for tissue damage and master regulator of stress response. Phytochem. Rev. 17:51–80 [Google Scholar]
  84. Koo AJK, Cooke TF, Howe GA. 84.  2011. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-l-isoleucine. PNAS 108:9298–303 [Google Scholar]
  85. Koo AJK, Gao XL, Jones AD, Howe GA. 85.  2009. A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59:974–86 [Google Scholar]
  86. Koo AJK, Howe GA. 86.  2009. The wound hormone jasmonate. Phytochemistry 70:1571–80 [Google Scholar]
  87. Koo AJK, Howe GA. 87.  2012. Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine. Front. Plant Sci. 3:19 [Google Scholar]
  88. Koo AJK, Thireault C, Zemelis S, Poudel AN, Zhang T. 88.  et al. 2014. Endoplasmic reticulum–associated inactivation of the hormone jasmonoyl-l-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J. Biol. Chem 289:29728–38 [Google Scholar]
  89. Laha D, Johnen P, Azevedo C, Dynowski M, Weiss M. 89.  et al. 2015. VIH2 regulates the synthesis of inositol pyrophosphate InsP8 and jasmonate-dependent defenses in Arabidopsis. Plant Cell 27:1082–97 [Google Scholar]
  90. Larrieu A, Champion A, Legrand J, Lavenus J, Mast D. 90.  et al. 2015. A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nat. Commun. 6:6043 [Google Scholar]
  91. Leone M, Keller MM, Cerrudo I, Ballare CL. 91.  2014. To grow or defend? Low red:far-red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability. New Phytol 204:355–67 [Google Scholar]
  92. Li Q, Zheng J, Li S, Huang G, Skilling SJ. 92.  et al. 2017. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Mol. Plant 10:695–708 [Google Scholar]
  93. Li R, Wang M, Wang Y, Schuman MC, Weinhold A. 93.  et al. 2017. Flower-specific jasmonate signaling regulates constitutive floral defenses in wild tobacco. PNAS 114:E7205–14 [Google Scholar]
  94. Li R, Weldegergis BT, Li J, Jung C, Qu J. 94.  et al. 2014. Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell 26:4991–5008 [Google Scholar]
  95. Lian TF, Xu YP, Li LF, Su XD. 95.  2017. Crystal structure of tetrameric Arabidopsis MYC2 reveals the mechanism of enhanced interaction with DNA. Cell Rep 19:1334–42 [Google Scholar]
  96. Liu L, Sonbol FM, Huot B, Gu Y, Withers J. 96.  et al. 2016. Salicylic acid receptors activate jasmonic acid signalling through a non-canonical pathway to promote effector-triggered immunity. Nat. Commun. 7:13099 [Google Scholar]
  97. Liu MJ, Seddon AE, Tsai ZT, Major IT, Floer M. 97.  et al. 2015. Determinants of nucleosome positioning and their influence on plant gene expression. Genome Res 25:1182–95 [Google Scholar]
  98. Liu XJ, An XH, Liu X, Hu DG, Wang XF. 98.  et al. 2017. MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. J. Exp. Bot. 68:2977–90 [Google Scholar]
  99. Ma KW, Jiang S, Hawara E, Lee D, Pan S. 99.  et al. 2015. Two serine residues in Pseudomonas syringae effector HopZ1a are required for acetyltransferase activity and association with the host co-factor. New Phytol 208:1157–68 [Google Scholar]
  100. Machado RA, McClure M, Herve MR, Baldwin IT, Erb M. 100.  2016. Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. eLife 5:e13720 [Google Scholar]
  101. Major IT, Yoshida Y, Campos ML, Kapali G, Xin XF. 101.  et al. 2017. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. New Phytol 215:1533–47 [Google Scholar]
  102. Mao YB, Liu YQ, Chen DY, Chen FY, Fang X. 102.  et al. 2017. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nat. Commun. 8:13925 [Google Scholar]
  103. Melotto M, Mecey C, Niu Y, Chung HS, Katsir L. 103.  et al. 2008. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine–dependent interactions with the COI1 F-box protein. Plant J 55:979–88 [Google Scholar]
  104. Melotto M, Underwood W, Koczan J, Nomura K, He SY. 104.  2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–80 [Google Scholar]
  105. Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C. 105.  2008. Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 177:114–27 [Google Scholar]
  106. Miersch O, Porzel A, Wasternack C. 106.  1999. Microbial conversion of jasmonates—hydroxylations by Aspergillus niger. Phytochemistry 50:1147–52 [Google Scholar]
  107. Monte I, Hamberg M, Chini A, Gimenez-Ibanez S, Garcia-Casado G. 107.  et al. 2014. Rational design of a ligand-based antagonist of jasmonate perception. Nat. Chem. Biol. 10:671–76 [Google Scholar]
  108. Moreno JE, Shyu C, Campos ML, Patel LC, Chung HS. 108.  et al. 2013. Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10. Plant Physiol 162:1006–17 [Google Scholar]
  109. Mosblech A, Thurow C, Gatz C, Feussner I, Heilmann I. 109.  2011. Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. Plant J 65:949–57 [Google Scholar]
  110. Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J. 110.  et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601 [Google Scholar]
  111. Nakata M, Mitsuda N, Herde M, Koo AJ, Moreno JE. 111.  et al. 2013. A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis. Plant Cell 25:1641–56 [Google Scholar]
  112. Nguyen CT, Martinoia E, Farmer EE. 112.  2017. Emerging jasmonate transporters. Mol. Plant 10:659–61 [Google Scholar]
  113. Oliw EH, Hamberg M. 113.  2017. An allene oxide and 12-oxophytodienoic acid are key intermediates in jasmonic acid biosynthesis by Fusarium oxysporum. J. Lipid Res 58:1670–80 [Google Scholar]
  114. Patkar RN, Benke PI, Qu Z, Chen YY, Yang F. 114.  et al. 2015. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat. Chem. Biol. 11:733–40 [Google Scholar]
  115. Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W. 115.  et al. 2010. NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–91Identifies NINJA as an adaptor protein that links JAZ to the corepressor TPL. [Google Scholar]
  116. Pauwels L, Goossens A. 116.  2011. The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–100 [Google Scholar]
  117. Pauwels L, Ritter A, Goossens J, Durand AN, Liu H. 117.  et al. 2015. The RING E3 ligase KEEP ON GOING modulates JASMONATE ZIM-DOMAIN12 stability. Plant Physiol 169:1405–17 [Google Scholar]
  118. Pérez AC, Goossens A. 118.  2013. Jasmonate signalling: a copycat of auxin signalling?. Plant Cell Environ 36:2071–84 [Google Scholar]
  119. Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM. 119.  2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308–16 [Google Scholar]
  120. Plett JM, Daguerre Y, Wittulsky S, Vayssieres A, Deveau A. 120.  et al. 2014. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. PNAS 111:8299–304 [Google Scholar]
  121. Ponce De Leon I, Schmelz EA, Gaggero C, Castro A, Alvarez A, Montesano M. 121.  2012. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection. Mol. Plant Pathol. 13:960–74 [Google Scholar]
  122. Pratiwi P, Tanaka G, Takahashi T, Xie X, Yoneyama K. 122.  et al. 2017. Identification of jasmonic acid and jasmonoyl-isoleucine, and characterization of AOS, AOC, OPR and JAR1 in the model lycophyte Selaginella moellendorffii. Plant Cell Physiol 58:789–801 [Google Scholar]
  123. Qi T, Huang H, Song S, Xie D. 123.  2015. Regulation of jasmonate-mediated stamen development and seed production by a bHLH-MYB complex in Arabidopsis. Plant Cell 27:1620–33 [Google Scholar]
  124. Qi T, Huang H, Wu D, Yan J, Qi Y. 124.  et al. 2014. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 26:1118–33 [Google Scholar]
  125. Qi T, Song S, Ren Q, Wu D, Huang H. 125.  et al. 2011. The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23:1795–814 [Google Scholar]
  126. Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R. 126.  et al. 2012. Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–63 [Google Scholar]
  127. Renner F, Schmitz ML. 127.  2009. Autoregulatory feedback loops terminating the NF-κB response. Trends Biochem. Sci. 34:128–35 [Google Scholar]
  128. Reymond P, Farmer EE. 128.  1998. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1:404–11 [Google Scholar]
  129. Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, Saito H, Masuda S. 129.  et al. 2013. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis. Plant Physiol 163:291–304 [Google Scholar]
  130. Schaller A, Stintzi A. 130.  2009. Enzymes in jasmonate biosynthesis—structure, function, regulation. Phytochemistry 70:1532–38 [Google Scholar]
  131. Scheres B, van der Putten WH. 131.  2017. The plant perceptron connects environment to development. Nature 543337–45
  132. 132.  Deleted in proof
  133. Schweizer F, Fernández-Calvo P, Zander M, Diez-Diaz M, Fonseca S. 133.  et al. 2013. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25:3117–32 [Google Scholar]
  134. Seo HS, Song JT, Cheong JJ, Lee YH, Lee YW. 134.  et al. 2001. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. PNAS 98:4788–93 [Google Scholar]
  135. Sheard LB, Tan X, Mao HB, Withers J, Ben-Nissan G. 135.  et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 468:400–5Describes the X-ray crystal structure of the COI1-JAZ coreceptor complex bound to either coronatine or the bioactive stereoisomer of JA-Ile. [Google Scholar]
  136. Shin J, Heidrich K, Sanchez-Villarreal A, Parker JE, Davis SJ. 136.  2012. TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. Plant Cell 24:2470–82 [Google Scholar]
  137. Shyu C, Figueroa P, DePew CL, Cooke TF, Sheard LB. 137.  et al. 2012. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis. Plant Cell 24:536–50 [Google Scholar]
  138. Smirnova E, Marquis V, Poirier L, Aubert Y, Zumsteg J. 138.  et al. 2017. Jasmonic acid oxidase 2 (JAO2) hydroxylates jasmonic acid and represses basal defense and resistance responses against Botrytis cinerea infection. Mol. Plant 10:115973 [Google Scholar]
  139. Song S, Huang H, Gao H, Wang J, Wu D. 139.  et al. 2014. Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell 26:263–79 [Google Scholar]
  140. Song S, Qi T, Fan M, Zhang X, Gao H. 140.  et al. 2013. The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLOS Genet 9:e1003653 [Google Scholar]
  141. Song S, Qi T, Huang H, Ren Q, Wu D. 141.  et al. 2011. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis. Plant Cell 23:1000–13 [Google Scholar]
  142. Song S, Qi T, Wasternack C, Xie D. 142.  2014. Jasmonate signaling and crosstalk with gibberellin and ethylene. Curr. Opin. Plant Biol. 21:112–19 [Google Scholar]
  143. Staswick PE, Tiryaki I. 143.  2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–27This and other work on the JAR1 conjugating enzyme demonstrate that JA-Ile is an active form of the hormone. [Google Scholar]
  144. Stitz M, Baldwin IT, Gaquerel E. 144.  2011. Diverting the flux of the JA pathway in Nicotiana attenuata compromises the plant's defense metabolism and fitness in nature and glasshouse. PLOS ONE 6:e25925 [Google Scholar]
  145. Stumpe M, Gobel C, Faltin B, Beike AK, Hause B. 145.  et al. 2010. The moss Physcomitrella patens contains cyclopentenones but no jasmonates: Mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol 188:740–49 [Google Scholar]
  146. Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA. 146.  2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. PNAS 108:E1254–63 [Google Scholar]
  147. Thatcher LF, Cevik V, Grant M, Zhai B, Jones JD. 147.  et al. 2016. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum.. J. Exp. Bot 67:2367–86 [Google Scholar]
  148. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A. 148.  et al. 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448:661–65Describes the discovery of JAZ proteins; shows that JA-Ile is the ligand that promotes COI1-JAZ interaction (also see 26, 168). [Google Scholar]
  149. Thireault C, Shyu C, Yoshida Y, St. Aubin B, Campos ML, Howe GA. 149.  2015. Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis. Plant J 82:669–79 [Google Scholar]
  150. Toda Y, Tanaka M, Ogawa D, Kurata K, Kurotani K-I. 150.  et al. 2013. RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. Plant Cell 25:1709–25 [Google Scholar]
  151. Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G. 151.  2007. The tify family previously known as ZIM. Trends Plant Sci 12:239–44 [Google Scholar]
  152. Wang C, Liu Y, Li SS, Han GZ. 152.  2015. Insights into the origin and evolution of plant hormone signaling machinery. Plant Physiol 167:872–886 [Google Scholar]
  153. Wasternack C.153.  2014. Action of jasmonates in plant stress responses and development—applied aspects. Biotechnol. Adv. 32:31–39 [Google Scholar]
  154. Wasternack C, Hause B. 154.  2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development: an update to the 2007 review in Annals of Botany. Ann. Bot 111:1021–58 [Google Scholar]
  155. Wessling R, Epple P, Altmann S, He Y, Yang L. 155.  et al. 2014. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life. Cell Host Microbe 16:364–75 [Google Scholar]
  156. Widemann E, Miesch L, Lugan R, Holder E, Heinrich C. 156.  et al. 2013. The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxyjasmonic acid upon wounding in Arabidopsis leaves. J. Biol. Chem. 288:31701–14 [Google Scholar]
  157. Withers J, Yao J, Mecey C, Howe GA, Melotto M, He SY. 157.  2012. Transcription factor-dependent nuclear localization of a transcriptional repressor in jasmonate hormone signaling. PNAS 109:20148–53 [Google Scholar]
  158. Woldemariam MG, Onkokesung N, Baldwin IT, Galis I. 158.  2012. Jasmonoyl-l-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-l-isoleucine levels and attenuates plant defenses against herbivores. Plant J 72:758–67 [Google Scholar]
  159. Wu H, Ye H, Yao R, Zhang T, Xiong L. 159.  2015. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Sci 232:1–12 [Google Scholar]
  160. Wu K, Zhang L, Zhou C, Yu CW, Chaikam V. 160.  2008. HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J. Exp. Bot 59:225–34 [Google Scholar]
  161. Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG. 161.  1998. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–94Identifies COI1 as an F-box protein and implicates ubiquitination in the jasmonate response pathway. [Google Scholar]
  162. Yamamoto Y, Ohshika J, Takahashi T, Ishizaki K, Kohchi T. 162.  et al. 2015. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. Phytochemistry 116:48–56 [Google Scholar]
  163. Yan C, Xie D. 163.  2015. Jasmonate in plant defence: sentinel or double agent?. Plant Biotechnol. J. 13:1233–40 [Google Scholar]
  164. Yan J, Li H, Li S, Yao R, Deng H. 164.  et al. 2013. The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway. Plant Cell 25:486–98 [Google Scholar]
  165. Yan J, Li S, Gu M, Yao R, Li Y. 165.  et al. 2016. Endogenous bioactive jasmonate is composed of a set of (+)-7-iso-JA-amino acid conjugates. Plant Physiol 172:2154–64 [Google Scholar]
  166. Yan J, Zhang C, Gu M, Bai Z, Zhang W. 166.  et al. 2009. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–36 [Google Scholar]
  167. Yan T, Chen M, Shen Q, Li L, Fu X. 167.  et al. 2017. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua. New Phytol 213:1145–55 [Google Scholar]
  168. Yan Y, Stolz S, Chetelat A, Reymond P, Pagni M. 168.  et al. 2007. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19:2470–83Describes the discovery of JAZ proteins (also see 26, 148). [Google Scholar]
  169. Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ. 169.  et al. 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. PNAS 109:1192–200 [Google Scholar]
  170. Yang L, Teixeira PJ, Biswas S, Finkel OM, He Y. 170.  et al. 2017. Pseudomonas syringae type III effector HopBB1 promotes host transcriptional repressor degradation to regulate phytohormone responses and virulence. Cell Host Microbe 21:156–68 [Google Scholar]
  171. Zaveska Drabkova L, Dobrev PI, Motyka V. 171.  2015. Phytohormone profiling across the bryophytes. PLOS ONE 10:e0125411 [Google Scholar]
  172. Zhai Q, Yan L, Tan D, Chen R, Sun J. 172.  et al. 2013. Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity. PLOS Genet 9:e1003422 [Google Scholar]
  173. Zhai Q, Zhang X, Wu F, Feng H, Deng L. 173.  et al. 2015. Transcriptional mechanism of jasmonate receptor COI1-mediated delay of flowering time in Arabidopsis. Plant Cell 27:2814–28 [Google Scholar]
  174. Zhang F, Ke J, Zhang L, Chen R, Sugimoto K. 174.  et al. 2017. Structural insights into alternative splicing–mediated desensitization of jasmonate signaling. PNAS 114:1720–25 [Google Scholar]
  175. Zhang F, Yao J, Ke J, Zhang L, Lam VQ. 175.  et al. 2015. Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 525:269–73Reports the X-ray crystal structure of the MYC3-JAZ9 complex and shows that JAZ and MED25 compete for MYC3 binding. [Google Scholar]
  176. Zhang L, Yao J, Withers J, Xin XF, Banerjee R. 176.  et al. 2015. Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor. PNAS 112:14354–59 [Google Scholar]
  177. Zhang L, Zhang F, Melotto M, Yao J, He SY. 177.  2017. Jasmonate signaling and manipulation by pathogens and insects. J. Exp. Bot. 68:1371–85 [Google Scholar]
  178. Zhang T, Poudel AN, Jewell JB, Kitaoka N, Staswick P. 178.  et al. 2016. Hormone crosstalk in wound stress response: Wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana. J. Exp. Bot 67:2107–20 [Google Scholar]
  179. Zhang X, Zhu Z, An F, Hao D, Li P. 179.  et al. 2014. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell 26:1105–17 [Google Scholar]
  180. Zhang Y, Turner J. 180.  2008. Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLOS ONE 3:e3699 [Google Scholar]
  181. Zhao M-L, Wang J-N, Shan W, Fan J-G, Kuang J-F. 181.  et al. 2013. Induction of jasmonate signalling regulators MaMYC2s and their physical interactions with MaICE1 in methyl jasmonate-induced chilling tolerance in banana fruit. Plant Cell Environ 36:30–51 [Google Scholar]
  182. Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ. 182.  et al. 2012. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11:587–96 [Google Scholar]
  183. Zhou Z, Wu Y, Yang Y, Du M, Zhang X. 183.  et al. 2015. An Arabidopsis plasma membrane proton ATPase modulates JA signaling and is exploited by the Pseudomonas syringae effector protein AvrB for stomatal invasion. Plant Cell 27:2032–41 [Google Scholar]
  184. Zhu Z, An F, Feng Y, Li P, Xue L. 184.  et al. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. PNAS 108:12539–44 [Google Scholar]
  185. Zust T, Agrawal AA. 185.  2017. Trade-offs between plant growth and defense: an emerging mechanistic synthesis. Annu. Rev. Plant Biol. 68:513–34 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040047
Loading
/content/journals/10.1146/annurev-arplant-042817-040047
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error