1932

Abstract

Plant oxylipins form a constantly growing group of signaling molecules that comprise oxygenated fatty acids and metabolites derived therefrom. In the last decade, the understanding of biosynthesis, metabolism, and action of oxylipins, especially jasmonates, has dramatically improved. Additional mechanistic insights into the action of enzymes and insights into signaling pathways have been deepened for jasmonates. For other oxylipins, such as the hydroxy fatty acids, individual signaling properties and cross talk between different oxylipins or even with additional phytohormones have recently been described. This review summarizes recent understanding of the biosynthesis, regulation, and function of oxylipins.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-arplant-042817-040440
2018-04-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/arplant/69/1/annurev-arplant-042817-040440.html?itemId=/content/journals/10.1146/annurev-arplant-042817-040440&mimeType=html&fmt=ahah

Literature Cited

  1. Aldridge DC, Galt S, Giles D, Turner WB. 1.  1971. Metabolites of Lasiodiplodia theobromae. J. Chem. Soc. C1623–27
  2. Andersson MX, Hamberg M, Kourtchenko O, Brunnstrom A, McPhail KL. 2.  et al. 2006. Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana: formation of a novel oxo-phytodienoic acid–containing galactolipid, Arabidopside E. J. Biol. Chem. 281:31528–37 [Google Scholar]
  3. Andolfi A, Maddau L, Cimmino A, Linaldeddu BT, Basso S. 3.  et al. 2014. Lasiojasmonates A–C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen. Phytochemistry 103:145–53 [Google Scholar]
  4. Andreou A, Brodhun F, Feussner I. 4.  2009. Biosynthesis of oxylipins in non-mammals. Prog. Lipid Res. 48:148–70 [Google Scholar]
  5. Arnold M, Gruber C, Floková K, Miersch O, Strnad M. 5.  et al. 2016. The recently identified isoleucine conjugate of cis-12-oxo-phytodienoic acid is partially active in cis-12-oxo-phytodienoic acid–specific gene expression of Arabidopsis thaliana. PLOS ONE 11:e0162829 [Google Scholar]
  6. Banas A, Johansson I, Stymne S. 6.  1992. Plant microsomal phospholipases exhibit preference for phosphatidylcholine with oxygenated acyl groups. Plant Sci 84:137–44 [Google Scholar]
  7. Bosch M, Wright L, Gershenzon J, Wasternack C, Hause B. 7.  et al. 2014. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. Plant Physiol 166:396–410 [Google Scholar]
  8. Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S. 8.  et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171:287–304 [Google Scholar]
  9. Brash AR.9.  2009. Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. Phytochemistry 70:1522–31 [Google Scholar]
  10. Breithaupt C, Kurzbauer R, Lilie H, Schaller A, Strassner J. 10.  et al. 2006. Crystal structure of 12-oxophytodienoate reductase 3 from tomato: self-inhibition by dimerization. PNAS 103:14337–42 [Google Scholar]
  11. Brodhagen M, Tsitsigiannis DI, Hornung E, Goebel C, Feussner I, Keller NP. 11.  2008. Reciprocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem. Mol. Microbiol. 67:378–91 [Google Scholar]
  12. Bruce TJA, Matthes MC, Chamberlain K, Woodcock CM, Mohib A. 12.  et al. 2008. cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. PNAS 105:4553–58 [Google Scholar]
  13. Bruckhoff V, Haroth S, Feussner K, König S, Brodhun F, Feussner I. 13.  2016. Functional characterization of CYP94-genes and identification of a novel jasmonate catabolite in flowers. PLOS ONE 11:e0159875 [Google Scholar]
  14. Caarls L, Elberse J, Awwanah M, Ludwig NR, de Vries M. 14.  et al. 2017. Arabidopsis JASMONATE-INDUCED OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the hormone jasmonic acid. PNAS 114:6388–93 [Google Scholar]
  15. Cao J, Li M, Chen J, Liu P, Li Z. 15.  2016. Effects of MeJA on Arabidopsis metabolome under endogenous JA deficiency. Sci. Rep. 6:37674 [Google Scholar]
  16. Chauvin A, Lenglet A, Wolfender JL, Farmer EE. 16.  2016. Paired hierarchical organization of 13-lipoxygenases in Arabidopsis. Plants 5:E16 [Google Scholar]
  17. Chehab EW, Kaspi R, Savchenko T, Rowe H, Negre-Zakharov F. 17.  et al. 2008. Distinct roles of jasmonates and aldehydes in plant-defense responses. PLOS ONE 3:e1904 [Google Scholar]
  18. Chehab EW, Kim S, Savchenko T, Kliebenstein D, Dehesh K, Braam J. 18.  2011. Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic acid–producing mutant. Plant Physiol 156:770–78 [Google Scholar]
  19. Christensen SA, Huffaker A, Kaplan F, Sims J, Ziemann S. 19.  et al. 2015. Maize death acids, 9-lipoxygenase–derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators. PNAS 112:11407–12 [Google Scholar]
  20. Christensen SA, Kolomiets MV. 20.  2011. The lipid language of plant-fungal interactions. Fungal Gen. Biol. 48:4–14 [Google Scholar]
  21. Dave A, Hernández ML, He Z, Andriotis VME, Vaistij FE. 21.  et al. 2011. 12-Oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell 23:583–99 [Google Scholar]
  22. Duan H, Huang M-Y, Palacio K, Schuler MA. 22.  2005. Variations in CYP74B2 (hydroperoxide lyase) gene expression differentially affect hexenal signaling in the Columbia and Landsberg erecta ecotypes of Arabidopsis. Plant Physiol 139:1529–44 [Google Scholar]
  23. Ellinger D, Stingl N, Kubigsteltig II, Bals T, Juenger M. 23.  et al. 2010. DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: Redundant lipases contribute to jasmonate formation. Plant Physiol 153:114–27 [Google Scholar]
  24. Fammartino A, Cardinale F, Göbel C, Mene-Saffrane L, Fournier J. 24.  et al. 2007. Characterization of a divinyl ether biosynthetic pathway specifically associated with pathogenesis in tobacco. Plant Physiol 143:378–88 [Google Scholar]
  25. Feussner I, Wasternack C. 25.  2002. The lipoxygenase pathway. Annu. Rev. Plant Biol. 53:275–97 [Google Scholar]
  26. Feussner I, Wasternack C, Kindl H, Kühn H. 26.  1995. Lipoxygenase-catalyzed oxygenation of storage lipids is implicated in lipid mobilization during germination. PNAS 92:11849–53 [Google Scholar]
  27. Fonseca S, Chini A, Hamberg M, Adie B, Porzel A. 27.  et al. 2009. (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5:344–50 [Google Scholar]
  28. Frankel EN.28.  1980. Lipid oxidation. Prog. Lipid Res. 19:1–22 [Google Scholar]
  29. Gachet MS, Schubert A, Calarco S, Boccard J, Gertsch J. 29.  2017. Targeted metabolomics shows plasticity in the evolution of signaling lipids and uncovers old and new endocannabinoids in the plant kingdom. Sci. Rep. 7:41177 [Google Scholar]
  30. Garreta A, Val-Moraes SP, Garcia-Fernandez Q, Busquets M, Juan C. 30.  et al. 2013. Structure and interaction with phospholipids of a prokaryotic lipoxygenase from Pseudomonas aeruginosa. FASEB J 27:4811–21 [Google Scholar]
  31. Gerwick WH, Moghaddam M, Hamberg M. 31.  1991. Oxylipin metabolism in the red alga Gracilariopsis lemaneiformis: mechanism of formation of vicinal dihydroxy fatty acids. Arch. Biochem. Biophys. 290:436–44 [Google Scholar]
  32. Gidda S, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L. 32.  2003. Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J. Biol. Chem 278:17895–900 [Google Scholar]
  33. Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, Wolfender J-L. 33.  2008. Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J. Biol. Chem. 283:16400–7 [Google Scholar]
  34. González-Pérez AB, Grechkin A, de Lera AR. 34.  2017. Rearrangement of vinyl allene oxide geometric isomers to cyclopentenones. Further computational insights with biologically relevant model systems. Org. Biomol. Chem. 15:2846–55 [Google Scholar]
  35. Goossens J, Mertens J, Goossens A. 35.  2017. Role and functioning of bHLH transcription factors in jasmonate signalling. J. Exp. Bot. 68:1333–47 [Google Scholar]
  36. Gorina SS, Toporkova YY, Mukhtarova LS, Smirnova EO, Chechetkin IR. 36.  et al. 2016. Oxylipin biosynthesis in spikemoss Selaginella moellendorffii: molecular cloning and identification of divinyl ether synthases CYP74M1 and CYP74M3. Biochim. Biophys. Acta 1861:301–9 [Google Scholar]
  37. Gu X-C, Chen J-F, Xiao Y, Di P, Xuan H-J. 37.  et al. 2012. Overexpression of allene oxide cyclase promoted tanshinone/phenolic acid production in Salvia miltiorrhiza. Plant Cell Rep 31:2247–59 [Google Scholar]
  38. Halitschke R, Ziegler J, Keinanen M, Baldwin IT. 38.  2004. Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuata. Plant J 40:35–46 [Google Scholar]
  39. Hamberg M, Ponce de Leon I, Rodriguez MJ, Castresana C. 39.  2005. α-Dioxygenases. Biochem. Biophys. Res. Commun. 338:169–74 [Google Scholar]
  40. Han G-Z.40.  2017. Evolution of jasmonate biosynthesis and signaling mechanisms. J. Exp. Bot. 68:1323–31 [Google Scholar]
  41. Hannapel DJ.41.  2010. A model system of development regulated by the long-distance transport of mRNA. J. Int. Plant Biol. 52:40–52 [Google Scholar]
  42. Heitz T, Smirnova E, Widemann E, Aubert Y, Pinot F, Ménard R. 42.  2016. The rise and fall of jasmonate biological activities. Lipids in Plant and Algae Development Y Nakamura, Y Li-Beisson 405–26 Cham, Switz.: Springer Int [Google Scholar]
  43. Heitz T, Widemann E, Lugan R, Miesch L, Ullmann P. 43.  et al. 2012. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 287:6296–306 [Google Scholar]
  44. Hofmann E, Zerbe P, Schaller F. 44.  2006. The crystal structure of Arabidopsis thaliana allene oxide cyclase: insights into the oxylipin cyclization reaction. Plant Cell 18:3201–17 [Google Scholar]
  45. Horn T, Adel S, Schumann R, Sur S, Kakularam KR. 45.  et al. 2015. Evolutionary aspects of lipoxygenases and genetic diversity of human leukotriene signaling. Prog. Lipid Res. 57:13–39 [Google Scholar]
  46. Howe GA, Major IT, Koo AJ. 46. 2018 Modularity in jasmonate signaling for multistress resilience. Annu. Rev. Plant Biol69 In press
  47. Hu J, Baker A, Bartel B, Linka N, Mullen RT. 47.  et al. 2012. Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–303 [Google Scholar]
  48. Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K. 48.  2001. The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–209 [Google Scholar]
  49. Ishimaru Y, Oikawa T, Suzuki T, Takeishi S, Matsuura H. 49.  et al. 2017. GTR1 is a jasmonic acid and jasmonoyl-l-isoleucine transporter in Arabidopsis thaliana. Biosci. Biotechnol. Biochem 81:249–55 [Google Scholar]
  50. Jimenez-Aleman GH, Machado RAR, Baldwin IT, Boland W. 50.  2017. JA-Ile-macrolactones uncouple growth and defense in wild tobacco. Org. Biomol. Chem. 15:3391–95 [Google Scholar]
  51. Jimenez-Aleman GH, Machado RAR, Gorls H, Baldwin IT, Boland W. 51.  2015. Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones. Org. Biomol. Chem. 13:5885–93 [Google Scholar]
  52. Kazan K.52.  2015. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 20:219–29 [Google Scholar]
  53. Kazan K, Manners JM. 53.  2011. The interplay between light and jasmonate signalling during defence and development. J. Exp. Bot. 62:4087–100 [Google Scholar]
  54. Kazan K, Manners JM. 54.  2013. MYC2: the master in action. Mol. Plant 6:686–703 [Google Scholar]
  55. Keereetaweep J, Blancaflor EB, Hornung E, Feussner I, Chapman KD. 55.  2013. Ethanolamide oxylipins of linolenic acid can negatively regulate Arabidopsis seedling development. Plant Cell 25:3824–40 [Google Scholar]
  56. Keereetaweep J, Blancaflor EB, Hornung E, Feussner I, Chapman KD. 56.  2015. Lipoxygenase-derived 9-hydro(pero)xides of linoleoylethanolamide interact with ABA signaling to arrest root development during Arabidopsis seedling establishment. Plant J 82:315–27 [Google Scholar]
  57. Kelly AA, Feussner I. 57.  2016. Oil is on the agenda: lipid turnover in higher plants. Biochim. Biophys. Acta 1861:1253–68 [Google Scholar]
  58. Koeduka T, Ishizaki K, Mwenda CM, Hori K, Sasaki-Sekimoto Y. 58.  et al. 2015. Biochemical characterization of allene oxide synthases from the liverwort Marchantia polymorpha and green microalgae Klebsormidium flaccidum provides insight into the evolutionary divergence of the plant CYP74 family. Planta 242:1175–86 [Google Scholar]
  59. Kombrink E.59.  2012. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta 236:1351–66 [Google Scholar]
  60. Koo AJ, Howe GA. 60.  2012. Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine. Front. Plant Sci. 3:19 [Google Scholar]
  61. Koo AJ, Thireault C, Zemelis S, Poudel AN, Zhang T. 61.  et al. 2014. Endoplasmic reticulum–associated inactivation of the hormone jasmonoyl-l-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J. Biol. Chem 289:29728–38 [Google Scholar]
  62. Koo AJK, Cooke TF, Howe GA. 62.  2011. Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone jasmonoyl-l-isoleucine. PNAS 108:9298–303 [Google Scholar]
  63. Koprivova A, Kopriva S. 63.  2016. Sulfation pathways in plants. Chem. Biol. Int. 259:23–30 [Google Scholar]
  64. Lee D-S, Nioche P, Hamberg M, Raman CS. 64.  2008. Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 455:363–68 [Google Scholar]
  65. Li N, Gügel IL, Giavalisco P, Zeisler V, Schreiber L. 65.  et al. 2015. FAX1, a novel membrane protein mediating plastid fatty acid export. PLOS Biol 13:e1002053 [Google Scholar]
  66. Li Q, Zheng J, Li S, Huang G, Skilling SJ. 66.  et al. 2017. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Mol. Plant 10:695–708 [Google Scholar]
  67. Li X-R, Li H-J, Yuan L, Liu M, Shi D-Q. 67.  et al. 2014. Arabidopsis DAYU/ABERRANT PEROXISOME MORPHOLOGY9 is a key regulator of peroxisome biogenesis and plays critical roles during pollen maturation and germination in planta. Plant Cell 26:619–35 [Google Scholar]
  68. Liu X, Li F, Tang J, Wang W, Zhang F. 68.  et al. 2012. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PLOS ONE 7:e50089 [Google Scholar]
  69. López MA, Vicente J, Kulasekaran S, Vellosillo T, Martínez M. 69.  et al. 2011. Antagonistic role of 9-lipoxygenase-derived oxylipins and ethylene in the control of oxidative stress, lipid peroxidation and plant defence. Plant J 67:447–58 [Google Scholar]
  70. Lu X, Zhang F, Shen Q, Jiang W, Pan Q. 70.  et al. 2014. Overexpression of allene oxide cyclase improves the biosynthesis of artemisinin in Artemisia annua L. PLOS ONE 9:e91741 [Google Scholar]
  71. Luo J, Wei K, Wang S, Zhao W, Ma C. 71.  et al. 2016. COI1-regulated hydroxylation of jasmonoyl-l-isoleucine impairs Nicotiana attenuata’s resistance to the generalist herbivore Spodoptera litura. J. Agric. Food Chem 64:2822–31 [Google Scholar]
  72. Major IT, Yoshida Y, Campos ML, Kapali G, Xin X-F. 72.  et al. 2017. Regulation of growth–defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module. New Phytol 215:1533–47 [Google Scholar]
  73. Marcos R, Izquierdo Y, Vellosillo T, Kulasekaran S, Cascón T. 73.  et al. 2015. 9-Lipoxygenase-derived oxylipins activate brassinosteroid signaling to promote cell wall–based defense and limit pathogen infection. Plant Physiol 169:2324–34 [Google Scholar]
  74. Matsui K.74.  2006. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 9:274–80 [Google Scholar]
  75. Matthes M, Bruce T, Ton J, Verrier P, Pickett J, Napier J. 75.  2010. The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence. Planta 232:1163–80 [Google Scholar]
  76. Meesters C, Mönig T, Oeljeklaus J, Krahn D, Westfall C. 76.  et al. 2014. A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nat. Chem. Biol 10:830–36 [Google Scholar]
  77. Meyer A, Miersch O, Büttner C, Dathe W, Sembdner G. 77.  1984. Occurrence of the plant growth regulator jasmonic acid in plants. J. Plant Growth Regul. 3:1–8 [Google Scholar]
  78. Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C. 78.  2008. Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 177:114–27 [Google Scholar]
  79. Monte I, Hamberg M, Chini A, Gimenez-Ibanez S, Garcia-Casado G. 79.  et al. 2014. Rational design of a ligand-based antagonism of jasmonate perception. Nat. Chem. Biol. 10:671–76 [Google Scholar]
  80. Montillet J-L, Leonhardt N, Mondy S, Tranchimand S, Rumeau D. 80.  et al. 2013. An abscisic acid–independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLOS Biol 11:e1001513 [Google Scholar]
  81. Mugford SG, Yoshimoto N, Reichelt M, Wirtz M, Hill L. 81.  et al. 2009. Disruption of adenosine-5′-phosphosulfate kinase in Arabidopsis reduces levels of sulfated secondary metabolites. Plant Cell 21:910–27 [Google Scholar]
  82. Müller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M. 82.  et al. 2008. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–85 [Google Scholar]
  83. Neumann P, Brodhun F, Sauer K, Herrfurth C, Hamberg M. 83.  et al. 2012. Crystal structures of Physcomitrella patens AOC1 and AOC2: insights into the enzyme mechanism and differences in substrate specificity. Plant Physiol 160:1251–66 [Google Scholar]
  84. Newcomer ME, Brash AR. 84.  2015. The structural basis for specificity in lipoxygenase catalysis. Prot. Sci. 24:298–309 [Google Scholar]
  85. Newie J, Neumann P, Werner M, Mata RA, Ficner R, Feussner I. 85.  2017. Lipoxygenase 2 from Cyanothece sp. controls dioxygen insertion by steric shielding and substrate fixation. Sci. Rep. 7:2069 [Google Scholar]
  86. Nguyen CT, Martinoia E, Farmer EE. 86.  2017. Emerging jasmonate transporters. Mol. Plant 10:659–61 [Google Scholar]
  87. Nilsson AK, Fahlberg P, Johansson ON, Hamberg M, Andersson MX, Ellerström M. 87.  2016. The activity of HYDROPEROXIDE LYASE 1 regulates accumulation of galactolipids containing 12-oxo-phytodienoic acid in Arabidopsis. J. Exp. Bot 67:5133–44 [Google Scholar]
  88. Ogorodnikova AV, Mukhitova FK, Grechkin AN. 88.  2015. Oxylipins in the spikemoss Selaginella martensii: detection of divinyl ethers, 12-oxophytodienoic acid and related cyclopentenones. Phytochemistry 118:42–50 [Google Scholar]
  89. Otto M, Naumann C, Brandt W, Wasternack C, Hause B. 89.  2016. Activity regulation by heteromerization of Arabidopsis allene oxide cyclase family members. Plants 5:3 [Google Scholar]
  90. Park S-W, Li W, Viehhauser A, He B, Kim S. 90.  et al. 2013. Cyclophilin 20-3 relays a 12-oxo-phytodienoic acid signal during stress responsive regulation of cellular redox homeostasis. PNAS 110:9559–64 [Google Scholar]
  91. Paschold A, Bonaventure G, Kant MR, Baldwin IT. 91.  2008. Jasmonate perception regulates jasmonate biosynthesis and JA-Ile metabolism: the case of COI1 in Nicotiana attenuata. Plant Cell Physiol 49:1165–75 [Google Scholar]
  92. Patkar RN, Benke PI, Qu Z, Constance Chen YY, Yang F. 92.  et al. 2015. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat. Chem. Biol. 11:733–40 [Google Scholar]
  93. Pieterse CMJ, van der Does D, Zamioudis C, Leon-Reyes A, van Wees SCM. 93.  2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28:489–521 [Google Scholar]
  94. Poudel AN, Zhang T, Kwasniewski M, Nakabayashi R, Saito K, Koo AJ. 94.  2016. Mutations in jasmonoyl-l-isoleucine-12-hydroxylases suppress multiple JA-dependent wound responses in Arabidopsis thaliana. Biochim. Biophys. Acta 1861:1396–408 [Google Scholar]
  95. Pratiwi P, Tanaka G, Takahashi T, Xie X, Yoneyama K. 95.  et al. 2017. Identification of jasmonic acid and jasmonoyl-isoleucine, and characterization of AOS, AOC, OPR and JAR1 in the model lycophyte Selaginella moellendorffii. Plant Cell Physiol 58:789–801 [Google Scholar]
  96. Qi J, Li J, Han X, Li R, Wu J. 96.  et al. 2016. Jasmonic acid carboxyl methyltransferase regulates development and herbivory-induced defense response in rice. J. Int. Plant Biol. 58:564–76 [Google Scholar]
  97. Richmond T, Bleecker A. 97.  1999. A defect in β-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell 11:1911–23 [Google Scholar]
  98. Rodriguez VM, Chetelat A, Majcherczyk P, Farmer EE. 98.  2010. Chloroplastic phosphoadenosine phosphosulfate metabolism regulates basal levels of the prohormone jasmonic acid in Arabidopsis leaves. Plant Physiol 152:1335–45 [Google Scholar]
  99. Saito H, Oikawa T, Hamamoto S, Ishimaru Y, Kanamori-Sato M. 99.  et al. 2015. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nat. Commun 6:6095 [Google Scholar]
  100. Salas JJ, García-González DL, Aparicio R. 100.  2006. Volatile compound biosynthesis by green leaves from an Arabidopsis thaliana hydroperoxide lyase knockout mutant. J. Agric. Food Chem. 54:8199–205 [Google Scholar]
  101. Sanchez Carranza AP, Singh A, Steinberger K, Panigrahi K, Palme K. 101.  et al. 2016. Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. Sci. Rep. 6:24212 [Google Scholar]
  102. Sanders P, Lee P, Biesgen C, Boone J, Beals T. 102.  et al. 2000. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12:1041–61 [Google Scholar]
  103. Savchenko T, Kolla VA, Wang C-Q, Nasafi Z, Hicks DR. 103.  et al. 2014. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol 164:1151–60 [Google Scholar]
  104. Savchenko T, Pearse IS, Ignatia L, Karban R, Dehesh K. 104.  2013. Insect herbivores selectively suppress the HPL branch of the oxylipin pathway in host plants. Plant J 73:653–62 [Google Scholar]
  105. Savchenko T, Walley JW, Chehab EW, Xiao Y, Kaspi R. 105.  et al. 2010. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. Plant Cell 22:3193–205 [Google Scholar]
  106. Savchenko T, Yanykin D, Khorobrykh A, Terentyev V, Klimov V, Dehesh K. 106.  2017. The hydroperoxide lyase branch of the oxylipin pathway protects against photoinhibition of photosynthesis. Planta 245:1179–92 [Google Scholar]
  107. Scalschi L, Sanmartin M, Camanes G, Troncho P, Sanchez-Serrano J. 107.  2015. Silencing of OPR3 in tomato reveals the role of OPDA in callose deposition during activation of defense responses against Botrytis cinerea. Plant J 81:304–15 [Google Scholar]
  108. Schaller A, Stintzi A. 108.  2009. Enzymes in jasmonate biosynthesis: structure, function, regulation. Phytochemistry 70:1532–38 [Google Scholar]
  109. Schaller F, Weiler E. 109.  1997. Molecular cloning and characterization of 12-oxophytodienoate reductase, an enzyme of the octadecanoid signaling pathway from Arabidopsis thaliana: structural and functional relationship to yeast old yellow enzyme. J. Biol. Chem. 272:28066–72 [Google Scholar]
  110. Schneider C, Niisuke K, Boeglin WE, Voehler M, Stec DF. 110.  et al. 2007. Enzymatic synthesis of a bicyclobutane fatty acid by a hemoprotein lipoxygenase fusion protein from the cyanobacterium Anabaena PCC 7120. PNAS 104:18941–45 [Google Scholar]
  111. Scholz J, Brodhun F, Hornung E, Herrfurth C, Stumpe M. 111.  et al. 2012. Biosynthesis of allene oxides in Physcomitrella patens. BMC Plant Biol 12:228 [Google Scholar]
  112. Scholz SS, Reichelt M, Boland W, Mithöfer A. 112.  2015. Additional evidence against jasmonate-induced jasmonate induction hypothesis. Plant Sci 239:9–14 [Google Scholar]
  113. Schulze B, Dabrowska P, Boland W. 113.  2007. Rapid enzymatic isomerization of 12-oxophytodienoic acid in the gut of Lepidopteran larvae. ChemBioChem 8:208–16 [Google Scholar]
  114. Schuman MC, Baldwin IT. 114.  2016. The layers of plant responses to insect herbivores. Annu. Rev. Entomol. 61:373–94 [Google Scholar]
  115. Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G. 115.  et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468:400–5 [Google Scholar]
  116. Shen J, Tieman D, Jones JB, Taylor MG, Schmelz E. 116.  et al. 2014. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. J. Exp. Bot. 65:419–28 [Google Scholar]
  117. Sobhy IS, Woodcock CM, Powers SJ, Caulfield JC, Pickett JA, Birkett MA. 117.  2017. cis-Jasmone elicits aphid-induced stress signalling in potatoes. J. Chem. Ecol. 43:39–52 [Google Scholar]
  118. Song S, Qi T, Wasternack C, Xie D. 118.  2014. Jasmonate signaling. Curr. Opin. Plant Biol. 21:112–19 [Google Scholar]
  119. Staswick PE, Tiryaki I. 119.  2004. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–27 [Google Scholar]
  120. Stenzel I, Hause B, Maucher H, Pitzschke A, Miersch O. 120.  et al. 2003. Allene oxide cyclase dependence of the wound response and vascular bundle–specific generation of jasmonates in tomato: amplification in wound signaling. Plant J 33:577–89 [Google Scholar]
  121. Stintzi A, Browse J. 121.  2000. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. PNAS 97:10625–30 [Google Scholar]
  122. Stitz M, Gase K, Baldwin IT, Gaquerel E. 122.  2011. Ectopic expression of AtJMT in Nicotiana attenuata: Creating a metabolic sink has tissue-specific consequences for the jasmonate metabolic network and silences downstream gene expression. Plant Physiol 157:341–54 [Google Scholar]
  123. Stumpe M, Göbel C, Faltin B, Beike AK, Hause B. 123.  et al. 2010. The moss Physcomitrella patens contains cyclopentenones but no jasmonates: Mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol 188:740–49 [Google Scholar]
  124. Sugimoto K, Matsui K, Iijima Y, Akakabe Y, Muramoto S. 124.  et al. 2014. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. PNAS 111:7144–49 [Google Scholar]
  125. Sun Y-H, Hung C-Y, Qiu J, Chen J, Kittur FS. 125.  et al. 2017. Accumulation of high OPDA level correlates with reduced ROS and elevated GSH benefiting white cell survival in variegated leaves. Sci. Rep. 7:44158 [Google Scholar]
  126. Suza W, Rowe M, Hamberg M, Staswick P. 126.  2010. A tomato enzyme synthesizes (+)-7-iso-jasmonoyl-l-isoleucine in wounded leaves. Planta 231:717–28 [Google Scholar]
  127. Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K. 127.  et al. 2005. 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139:1268–83 [Google Scholar]
  128. Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M. 128.  et al. 2005. Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–40 [Google Scholar]
  129. Toporkova YY, Ermilova VS, Gorina SS, Mukhtarova LS, Osipova EV. 129.  et al. 2013. Structure–function relationship in the CYP74 family: conversion of divinyl ether synthases into allene oxide synthases by site-directed mutagenesis. FEBS Lett 587:2552–58 [Google Scholar]
  130. Toporkova YY, Fatykhova VS, Gogolev YV, Khairutdinov BI, Mukhtarova LS, Grechkin AN. 130.  2017. Epoxyalcohol synthase of Ectocarpus siliculosus. First CYP74-related enzyme of oxylipin biosynthesis in brown algae. Biochim. Biophys. Acta 1862:167–75 [Google Scholar]
  131. Toporkova YY, Gogolev YV, Mukhtarova LS, Grechkin AN. 131.  2008. Determinants governing the CYP74 catalysis: conversion of allene oxide synthase into hydroperoxide lyase by site-directed mutagenesis. FEBS Lett 582:3423–28 [Google Scholar]
  132. Volkov A, Liavonchanka A, Kamneva O, Fiedler T, Göbel C. 132.  et al. 2010. Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J. Biol. Chem. 285:10353–61 [Google Scholar]
  133. Walley JW, Kliebenstein DJ, Bostock RM, Dehesh K. 133.  2013. Fatty acids and early detection of pathogens. Curr. Opin. Plant Biol. 16:520–26 [Google Scholar]
  134. Wasternack C.134.  2015. How jasmonates earned their laurels: past and present. J. Plant Growth Reg. 34:761–94 [Google Scholar]
  135. Wasternack C, Hause B. 135.  2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany Ann. Bot 111:1021–58 [Google Scholar]
  136. Wasternack C, Song S. 136.  2017. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 68:1303–21 [Google Scholar]
  137. Wasternack C, Strnad M. 137.  2016. Jasmonate signaling in plant stress responses and development: active and inactive compounds. New Biotechnol 33:604–13 [Google Scholar]
  138. Westfall CS, Muehler AM, Jez JM. 138.  2013. Enzyme action in the regulation of plant hormone responses. J. Biol. Chem. 288:19304–11 [Google Scholar]
  139. Westfall CS, Sherp AM, Zubieta C, Alvarez S, Schraft E. 139.  et al. 2016. Arabidopsis thaliana GH3.5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. PNAS 113:13917–22 [Google Scholar]
  140. Westfall CS, Zubieta C, Herrmann J, Kapp U, Nanao MH, Jez JM. 140.  2012. Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Science 336:1708–11 [Google Scholar]
  141. Widemann E, Smirnova E, Aubert Y, Miesch L, Heitz T. 141.  2016. Dynamics of jasmonate metabolism upon flowering and across leaf stress responses in Arabidopsis thaliana. Plants 5:4 [Google Scholar]
  142. Wiszniewski AAG, Bussell JD, Long RL, Smith SM. 142.  2014. Knockout of the two evolutionarily conserved peroxisomal 3-ketoacyl-CoA thiolases in Arabidopsis recapitulates the abnormal inflorescence meristem 1 phenotype. J. Exp. Bot. 65:6723–33 [Google Scholar]
  143. Woldemariam M, Ongokesung N, Baldwin I, Galis I. 143.  2012. Jasmonoyl-l-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-l-isoleucine levels and attenuates plant defenses against herbivores. Plant J 72:758–67 [Google Scholar]
  144. Yamamoto Y, Ohshika J, Takahashi T, Ishizaki K, Kohchi T. 144.  et al. 2015. Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. Phytochemistry 116:48–56 [Google Scholar]
  145. Yan J, Li H, Li S, Yao R, Deng H. 145.  et al. 2013. The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway. Plant Cell 25:486–98 [Google Scholar]
  146. Yan J, Li S, Gu M, Yao R, Li Y. 146.  et al. 2016. Endogenous bioactive jasmonate is composed of a set of (+)-7-iso-JA-amino acid conjugates Plant Physiol. 1722154–64
  147. Yan L, Zhai Q, Wei J, Li S, Wang B. 147.  et al. 2013. Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 9:e1003964 [Google Scholar]
  148. Yan J, Zhang C, Gu M, Bai Z, Zhang W. 148.  et al. 2009. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–36 [Google Scholar]
  149. Ye Z-W, Lung S-C, Hu T-H, Chen Q-F, Suen Y-L. 149.  et al. 2016. Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition. Plant Mol. Biol. 92:717–30 [Google Scholar]
  150. Ytterberg AJ, Peltier J-B, van Wijk KJ. 150.  2006. Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–97 [Google Scholar]
  151. Zhang T, Poudel AN, Jewell JB, Kitaoka N, Staswick P. 151.  et al. 2016. Hormone crosstalk in wound stress response: Wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana. J. Exp. Bot 67:2107–20 [Google Scholar]
  152. Zhao Y, Dong W, Zhang N, Ai X, Wang M. 152.  et al. 2014. A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling. Plant Physiol 164:1068–76 [Google Scholar]
  153. Zheng H, Pan X, Deng Y, Wu H, Liu P, Li X. 153.  2016. AtOPR3 specifically inhibits primary root growth in Arabidopsis under phosphate deficiency. Sci. Rep. 6:24778 [Google Scholar]
  154. Zhou M, Memelink J. 154.  2016. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol. Adv. 34:441–49 [Google Scholar]
/content/journals/10.1146/annurev-arplant-042817-040440
Loading
/content/journals/10.1146/annurev-arplant-042817-040440
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error