1932

Abstract

Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone–mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein–mediated maturation of mitochondrial Fe/S proteins and the importance for human disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-013118-111540
2020-06-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/biochem/89/1/annurev-biochem-013118-111540.html?itemId=/content/journals/10.1146/annurev-biochem-013118-111540&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Huber C, Wächtershauser G. 2006. α-Hydroxy and α-amino acids under possible Hadean, volcanic origin-of-life conditions. Science 314:630–32
    [Google Scholar]
  2. 2. 
    Beinert H, Holm RH, Münck E 1997. Iron-sulfur clusters: nature's modular, multipurpose structures. Science 277:653–59
    [Google Scholar]
  3. 3. 
    Iwasaki T. 2010. Iron-sulfur world in aerobic and hyperthermoacidophilic archaea Sulfolobus. Archaea 2010.842639
    [Google Scholar]
  4. 4. 
    Rouault TA. 2017. Iron-Sulfur Clusters in Chemistry and Biology: Characterization, Properties and Applications Berlin: De Gruyter
  5. 5. 
    Lill R, Broderick JB, Dean DR 2015. Special issue on iron–sulfur proteins: structure, function, biogenesis and diseases. Biochim. Biophys. Acta Mol. Cell Res. 1853:1251–52
    [Google Scholar]
  6. 6. 
    Piccioli M. 2018. The biogenesis of iron-sulfur proteins: from cellular biology to molecular aspects. J. Biol. Inorg. Chem. 23:493–94
    [Google Scholar]
  7. 7. 
    Freibert SA, Weiler BD, Bill E, Pierik AJ, Muhlenhoff U, Lill R 2018. Biochemical reconstitution and spectroscopic analysis of iron-sulfur proteins. Methods Enzymol 599:197–226
    [Google Scholar]
  8. 8. 
    Kispal G, Csere P, Prohl C, Lill R 1999. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J 18:3981–89
    [Google Scholar]
  9. 9. 
    Schilke B, Voisine C, Beinert H, Craig E 1999. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. PNAS 96:10206–11
    [Google Scholar]
  10. 10. 
    Garland SA, Hoff K, Vickery LE, Culotta VC 1999. Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J. Mol. Biol. 294:897–907
    [Google Scholar]
  11. 11. 
    Zheng L, Cash VL, Flint DH, Dean DR 1998. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J. Biol. Chem 273:13264–72
    [Google Scholar]
  12. 12. 
    Johnson DC, Dean DR, Smith AD, Johnson MK 2005. Structure, function and formation of biological iron-sulfur clusters. Annu. Rev. Biochem. 74:247–81
    [Google Scholar]
  13. 13. 
    Lill R. 2009. Function and biogenesis iron-sulphur proteins. Nature 460:831–38
    [Google Scholar]
  14. 14. 
    Freibert SA, Goldberg AV, Hacker C, Molik S, Dean P et al. 2017. Evolutionary conservation and in vitro reconstitution of microsporidian iron-sulfur cluster biosynthesis. Nat. Commun. 8:13932
    [Google Scholar]
  15. 15. 
    Pala ZR, Saxena V, Saggu GS, Garg S 2018. Recent advances in the [Fe–S] cluster biogenesis (SUF) pathway functional in the apicoplast of Plasmodium. Trends Parasitol 34:800–9
    [Google Scholar]
  16. 16. 
    Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J et al. 2015. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron–sulfur proteins. Eur. J. Cell Biol. 94:280–91
    [Google Scholar]
  17. 17. 
    Netz DJ, Mascarenhas J, Stehling O, Pierik AJ, Lill R 2014. Maturation of cytosolic and nuclear iron–sulfur proteins. Trends Cell Biol 24:303–12
    [Google Scholar]
  18. 18. 
    Paul VD, Lill R. 2015. Biogenesis of cytosolic and nuclear iron–sulfur proteins and their role in genome stability. Biochim. Biophys. Acta Mol. Cell Res. 1853:1528–39
    [Google Scholar]
  19. 19. 
    Ciofi-Baffoni S, Nasta V, Banci L 2018. Protein networks in the maturation of human iron–sulfur proteins. Metallomics 10:49–72
    [Google Scholar]
  20. 20. 
    Lill R, Mühlenhoff U. 2008. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 77:669–700
    [Google Scholar]
  21. 21. 
    Py B, Barras F. 2015. Genetic approaches of the Fe–S cluster biogenesis process in bacteria: historical account, methodological aspects and future challenges. Biochim. Biophys. Acta Mol. Cell Res. 1853:1429–35
    [Google Scholar]
  22. 22. 
    Outten FW. 2015. Recent advances in the Suf Fe–S cluster biogenesis pathway: beyond the Proteobacteria. Biochim. Biophys. Acta Mol. Cell Res. 1853:1464–69
    [Google Scholar]
  23. 23. 
    Balk J, Schaedler TA. 2014. Iron cofactor assembly in plants. Annu. Rev. Plant Biol. 65:125–53
    [Google Scholar]
  24. 24. 
    Lu Y. 2018. Assembly and transfer of iron–sulfur clusters in the plastid. Front. Plant Sci. 9:336
    [Google Scholar]
  25. 25. 
    Przybyla-Toscano J, Roland M, Gaymard F, Couturier J, Rouhier N 2018. Roles and maturation of iron–sulfur proteins in plastids. J. Biol. Inorg. Chem. 23:545–66
    [Google Scholar]
  26. 26. 
    Andreini C, Banci L, Rosato A 2016. Exploiting bacterial operons to illuminate human iron–sulfur proteins. J. Proteome Res. 15:1308–22
    [Google Scholar]
  27. 27. 
    Andreini C, Rosato A, Banci L 2017. The relationship between environmental dioxygen and iron-sulfur proteins explored at the genome level. PLOS ONE 12:e0171279
    [Google Scholar]
  28. 28. 
    Marelja Z, Leimkuhler S, Missirlis F 2018. Iron sulfur and molybdenum cofactor enzymes regulate the Drosophila life cycle by controlling cell metabolism. Front. Physiol. 9:50
    [Google Scholar]
  29. 29. 
    Netz DJ, Stith CM, Stumpfig M, Kopf G, Vogel D et al. 2012. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat. Chem. Biol. 8:125–32
    [Google Scholar]
  30. 30. 
    Fuss JO, Tsai CL, Ishida JP, Tainer JA 2015. Emerging critical roles of Fe–S clusters in DNA replication and repair. Biochim. Biophys. Acta Mol. Cell Res. 1853:1253–71
    [Google Scholar]
  31. 31. 
    Pain D, Dancis A. 2016. Roles of Fe–S proteins: from cofactor synthesis to iron homeostasis to protein synthesis. Curr. Opin. Genet. Dev. 38:45–51
    [Google Scholar]
  32. 32. 
    Kimura S, Suzuki T. 2015. Iron–sulfur proteins responsible for RNA modifications. Biochim. Biophys. Acta Mol. Cell Res. 1853:1272–83
    [Google Scholar]
  33. 33. 
    Dong M, Su X, Dzikovski B, Dando EE, Zhu X et al. 2014. Dph3 is an electron donor for Dph1-Dph2 in the first step of eukaryotic diphthamide biosynthesis. J. Am. Chem. Soc. 136:1754–57
    [Google Scholar]
  34. 34. 
    Tsuda-Sakurai K, Miura M. 2019. The hidden nature of protein translational control by diphthamide: the secrets under the leather. J. Biochem. 165:1–8
    [Google Scholar]
  35. 35. 
    Anderson CP, Shen M, Eisenstein RS, Leibold EA 2012. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim. Biophys. Acta Mol. Cell Res. 1823:1468–83
    [Google Scholar]
  36. 36. 
    Upadhyay AS, Stehling O, Panayiotou C, Rosser R, Lill R, Overby AK 2017. Cellular requirements for iron–sulfur cluster insertion into the antiviral radical SAM protein viperin. J. Biol. Chem. 292:13879–89
    [Google Scholar]
  37. 37. 
    Upadhyay AS, Vonderstein K, Pichlmair A, Stehling O, Bennett KL et al. 2014. Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity. Cell Microbiol 16:834–48
    [Google Scholar]
  38. 38. 
    Gizzi AS, Grove TL, Arnold JJ, Jose J, Jangra RK et al. 2018. A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature 558:610–14
    [Google Scholar]
  39. 39. 
    Ben-Shimon L, Paul VD, David-Kadoch G, Volpe M, Stumpfig M et al. 2018. Fe-S cluster coordination of the chromokinesin KIF4A alters its subcellular localization during mitosis. J. Cell Sci. 131:jcs211433
    [Google Scholar]
  40. 40. 
    Mancera-Martinez E, Brito Querido J, Valasek LS, Simonetti A, Hashem Y 2017. ABCE1: a special factor that orchestrates translation at the crossroad between recycling and initiation. RNA Biol 14:1279–85
    [Google Scholar]
  41. 41. 
    Rudolf J, Makrantoni V, Ingledew WJ, Stark MJ, White MF 2006. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol. Cell 23:801–8
    [Google Scholar]
  42. 42. 
    Barton JK, Silva RMB, O'Brien E 2019. Redox chemistry in the genome: emergence of the [4Fe4S] cofactor in repair and replication. Annu. Rev. Biochem. 88:163–90
    [Google Scholar]
  43. 43. 
    Lill R, Mühlenhoff U. 2005. Iron–sulfur-protein biogenesis in eukaryotes. Trends Biochem. Sci. 30:133–41
    [Google Scholar]
  44. 44. 
    Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J et al. 2003. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–76
    [Google Scholar]
  45. 45. 
    Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G et al. 2008. Localization and functionality of microsporidian iron–sulphur cluster assembly proteins. Nature 452:624–28
    [Google Scholar]
  46. 46. 
    Pena-Diaz P, Lukes J. 2018. Fe–S cluster assembly in the supergroup Excavata. J. Biol. Inorg. Chem. 23:521–41
    [Google Scholar]
  47. 47. 
    Karnkowska A, Vacek V, Zubacova Z, Treitli SC, Petrzelkova R et al. 2016. A eukaryote without a mitochondrial organelle. Curr. Biol. 26:1274–84
    [Google Scholar]
  48. 48. 
    Gerber J, Neumann K, Prohl C, Mühlenhoff U, Lill R 2004. The yeast scaffold proteins Isu1p and Isu2p are required inside mitochondria for maturation of cytosolic Fe/S proteins. Mol. Cell. Biol. 24:4848–57
    [Google Scholar]
  49. 49. 
    Biederbick A, Stehling O, Rösser R, Niggemeyer B, Nakai Y et al. 2006. Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation. Mol. Cell. Biol. 26:5675–87
    [Google Scholar]
  50. 50. 
    Crooks DR, Jeong SY, Tong WH, Ghosh MC, Olivierre H et al. 2012. Tissue specificity of a human mitochondrial disease: differentiation-enhanced mis-splicing of the Fe-S scaffold gene ISCU renders patient cells more sensitive to oxidative stress in ISCU myopathy. J. Biol. Chem. 287:40119–30
    [Google Scholar]
  51. 51. 
    Mühlenhoff U, Gerber J, Richhardt N, Lill R 2003. Components involved in assembly and dislocation of iron–sulfur clusters on the scaffold protein Isu1p. EMBO J 22:4815–25
    [Google Scholar]
  52. 52. 
    Navarro-Sastre A, Tort F, Stehling O, Uzarska MA, Arranz JA et al. 2011. A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am. J. Hum. Genet. 89:656–67
    [Google Scholar]
  53. 53. 
    Uzarska MA, Dutkiewicz R, Freibert SA, Lill R, Muhlenhoff U 2013. The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation. Mol. Biol. Cell 24:1830–41
    [Google Scholar]
  54. 54. 
    Fox NG, Das D, Chakrabarti M, Lindahl PA, Barondeau DP 2015. Frataxin accelerates [2Fe-2S] cluster formation on the human Fe–S assembly complex. Biochemistry 54:3880–89
    [Google Scholar]
  55. 55. 
    Blanc B, Gerez C, Ollagnier de Choudens S 2015. Assembly of Fe/S proteins in bacterial systems: biochemistry of the bacterial ISC system. Biochim. Biophys. Acta Mol. Cell Res. 1853:1436–47
    [Google Scholar]
  56. 56. 
    Percudani R, Peracchi A. 2009. The B6 database: a tool for the description and classification of vitamin B6-dependent enzymatic activities and of the corresponding protein families. BMC Bioinform 10:273
    [Google Scholar]
  57. 57. 
    Boniecki MT, Freibert SA, Muhlenhoff U, Lill R, Cygler M 2017. Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex. Nat. Commun. 8:1287
    [Google Scholar]
  58. 58. 
    Cai K, Frederick RO, Dashti H, Markley JL 2018. Architectural features of human mitochondrial cysteine desulfurase complexes from crosslinking mass spectrometry and small-angle X-ray scattering. Structure 26:1127–36.e4
    [Google Scholar]
  59. 59. 
    Fox NG, Yu X, Feng X, Bailey HJ, Martelli A et al. 2019. Structure of the human frataxin-bound iron-sulfur cluster assembly complex provides insight into its activation mechanism. Nat. Commun. 10:2210
    [Google Scholar]
  60. 60. 
    Adam AC, Bornhövd C, Prokisch H, Neupert W, Hell K 2006. The Nfs1 interacting protein Isd11 has an essential role in Fe/S cluster biogenesis in mitochondria. EMBO J 25:174–83
    [Google Scholar]
  61. 61. 
    Shi Y, Ghosh MC, Tong WH, Rouault TA 2009. Human ISD11 is essential for both iron–sulfur cluster assembly and maintenance of normal cellular iron homeostasis. Hum. Mol. Genet. 18:3014–25
    [Google Scholar]
  62. 62. 
    Wiedemann N, Urzica E, Guiard B, Müller H, Lohaus C et al. 2006. Essential role of Isd11 in mitochondrial iron–sulfur cluster synthesis on Isu scaffold proteins. EMBO J 25:184–95
    [Google Scholar]
  63. 63. 
    Van Vranken JG, Jeong MY, Wei P, Chen YC, Gygi SP et al. 2016. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. eLife 5:e17828
    [Google Scholar]
  64. 64. 
    Kastaniotis AJ, Autio KJ, Keratar JM, Monteuuis G, Makela AM et al. 2017. Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:39–48
    [Google Scholar]
  65. 64a. 
    Masud AJ, Kastaniotis AJ, Rahman MT, Autio KJ, Hiltunen JK 2019. Mitochondrial acyl carrier protein (ACP) at the interface of metabolic state sensing and mitochondrial function. Biochim. Biophys. Acta Mol. Cell Res 1866:118540
    [Google Scholar]
  66. 65. 
    Nowinski SM, Van Vranken JG, Dove KK, Rutter J 2018. Impact of mitochondrial fatty acid synthesis on mitochondrial biogenesis. Curr. Biol. 28:R1212–19
    [Google Scholar]
  67. 66. 
    Cory SA, Van Vranken JG, Brignole EJ, Patra S, Winge DR et al. 2017. Structure of human Fe–S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP–ISD11 interactions. PNAS 114:E5325–34
    [Google Scholar]
  68. 67. 
    Gakh O, Ranatunga W, Smith DY IV, Ahlgren EC, Al-Karadaghi S et al. 2016. Architecture of the human mitochondrial iron-sulfur cluster assembly machinery. J. Biol. Chem. 291:21296–321
    [Google Scholar]
  69. 68. 
    Webert H, Freibert SA, Gallo A, Heidenreich T, Linne U et al. 2014. Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nat. Commun. 5:5013
    [Google Scholar]
  70. 69. 
    Zheng L, White RH, Cash VL, Dean DR 1994. Mechanism for the desulfurization of L-cysteine catalyzed by the nifS gene product. Biochemistry 33:4714–20
    [Google Scholar]
  71. 70. 
    Fujishiro T, Terahata T, Kunichika K, Yokoyama N, Maruyama C et al. 2017. Zinc-ligand swapping mediated complex formation and sulfur transfer between SufS and SufU for iron–sulfur cluster biogenesis in Bacillus subtilis. J. Am. Chem. Soc 139:18464–67
    [Google Scholar]
  72. 71. 
    Blahut M, Wise CE, Bruno MR, Dong G, Makris TM et al. 2019. Direct observation of intermediates in the SufS cysteine desulfurase reaction reveals functional roles of conserved active-site residues. J. Biol. Chem. 294:12444–58
    [Google Scholar]
  73. 72. 
    Shi R, Proteau A, Villarroya M, Moukadiri I, Zhang L et al. 2010. Structural basis for Fe–S cluster assembly and tRNA thiolation mediated by IscS protein–protein interactions. PLOS Biol 8:e1000354
    [Google Scholar]
  74. 73. 
    Tsai CL, Barondeau DP. 2010. Human frataxin is an allosteric switch that activates the Fe–S cluster biosynthetic complex. Biochemistry 49:9132–39
    [Google Scholar]
  75. 74. 
    Bridwell-Rabb J, Fox NG, Tsai CL, Winn AM, Barondeau DP 2014. Human frataxin activates Fe–S cluster biosynthesis by facilitating sulfur transfer chemistry. Biochemistry 53:4904–13
    [Google Scholar]
  76. 75. 
    Parent A, Elduque X, Cornu D, Belot L, Le Caer JP et al. 2015. Mammalian frataxin directly enhances sulfur transfer of NFS1 persulfide to both ISCU and free thiols. Nat. Commun. 6:5686
    [Google Scholar]
  77. 76. 
    Gervason S, Larkem D, Mansour AB, Botzanowski T, Muller CS et al. 2019. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nat. Commun. 10:3566
    [Google Scholar]
  78. 77. 
    Vaubel RA, Isaya G. 2013. Iron–sulfur cluster synthesis, iron homeostasis and oxidative stress in Friedreich ataxia. Mol. Cell Neurosci. 55:50–61
    [Google Scholar]
  79. 78. 
    Aloria K, Schilke B, Andrew A, Craig EA 2004. Iron-induced oligomerization of yeast frataxin homologue Yfh1 is dispensable in vivo. EMBO Rep 5:1096–101
    [Google Scholar]
  80. 79. 
    Stemmler TL, Lesuisse E, Pain D, Dancis A 2010. Frataxin and mitochondrial FeS cluster biogenesis. J. Biol. Chem. 285:26737–43
    [Google Scholar]
  81. 80. 
    Lange H, Kaut A, Kispal G, Lill R 2000. A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. PNAS 97:1050–55
    [Google Scholar]
  82. 81. 
    Sheftel AD, Stehling O, Pierik AJ, Elsasser HP, Muhlenhoff U et al. 2010. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. PNAS 107:11775–80
    [Google Scholar]
  83. 82. 
    Cai K, Tonelli M, Frederick RO, Markley JL 2017. Human mitochondrial ferredoxin 1 (FDX1) and ferredoxin 2 (FDX2) both bind cysteine desulfurase and donate electrons for iron–sulfur cluster biosynthesis. Biochemistry 56:487–99
    [Google Scholar]
  84. 83. 
    Li J, Saxena S, Pain D, Dancis A 2001. Adrenodoxin reductase homolog (Arh1p) of yeast mitochondria required for iron homeostasis. J. Biol. Chem. 276:1503–9
    [Google Scholar]
  85. 84. 
    Shi Y, Ghosh M, Kovtunovych G, Crooks DR, Rouault TA 2012. Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis. Biochim. Biophys. Acta Mol. Cell Res. 1823:484–92
    [Google Scholar]
  86. 85. 
    Mühlenhoff U, Balk J, Richhardt N, Kaiser JT, Sipos K et al. 2004. Functional characterization of the eukaryotic cysteine desulfurase Nfs1p from Saccharomyces cerevisiae.J. Biol. Chem 279:36906–15
    [Google Scholar]
  87. 86. 
    Li K, Tong WH, Hughes RM, Rouault TA 2006. Roles of the mammalian cytosolic cysteine desulfurase, ISCS, and scaffold protein, ISCU in iron-sulfur cluster assembly. J. Biol. Chem. 281:12344–51
    [Google Scholar]
  88. 87. 
    Angerer H. 2013. The superfamily of mitochondrial Complex1_LYR motif-containing (LYRM) proteins. Biochem. Soc. Trans. 41:1335–41
    [Google Scholar]
  89. 88. 
    Zhu J, Vinothkumar KR, Hirst J 2016. Structure of mammalian respiratory complex I. Nature 536:354–58
    [Google Scholar]
  90. 89. 
    Brown A, Rathore S, Kimanius D, Aibara S, Bai XC et al. 2017. Structures of the human mitochondrial ribosome in native states of assembly. Nat. Struct. Mol. Biol. 24:866–69
    [Google Scholar]
  91. 90. 
    Angerer H, Radermacher M, Mankowska M, Steger M, Zwicker K et al. 2014. The LYR protein subunit NB4M/NDUFA6 of mitochondrial complex I anchors an acyl carrier protein and is essential for catalytic activity. PNAS 111:5207–12
    [Google Scholar]
  92. 91. 
    Angerer H, Schonborn S, Gorka J, Bahr U, Karas M et al. 2017. Acyl modification and binding of mitochondrial ACP to multiprotein complexes. Biochim. Biophys. Acta Mol. Cell Res. 1864:1913–20
    [Google Scholar]
  93. 92. 
    Majmudar JD, Feng X, Fox NG, Nabhan JF, Towle T et al. 2019. 4′-Phosphopantetheine and long acyl chain-dependent interactions are integral to human mitochondrial acyl carrier protein function. MedChemComm 10:209–20
    [Google Scholar]
  94. 93. 
    Van Vranken JG, Nowinski SM, Clowers KJ, Jeong MY, Ouyang Y et al. 2018. ACP acylation is an acetyl-CoA-dependent modification required for electron transport chain assembly. Mol. Cell 71:567–80.e4
    [Google Scholar]
  95. 94. 
    Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL et al. 2017. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551:639–43
    [Google Scholar]
  96. 95. 
    Dutkiewicz R, Nowak M. 2018. Molecular chaperones involved in mitochondrial iron–sulfur protein biogenesis. J. Biol. Inorg. Chem. 23:569–79
    [Google Scholar]
  97. 96. 
    Pukszta S, Schilke B, Dutkiewicz R, Kominek J, Moczulska K et al. 2010. Co-evolution-driven switch of J-protein specificity towards an Hsp70 partner. EMBO Rep 11:360–65
    [Google Scholar]
  98. 97. 
    Schilke B, Williams B, Knieszner H, Pukszta S, D'Silva P et al. 2006. Evolution of mitochondrial chaperones utilized in Fe-S cluster biogenesis. Curr. Biol. 16:1660–65
    [Google Scholar]
  99. 98. 
    Delewski W, Paterkiewicz B, Manicki M, Schilke B, Tomiczek B et al. 2016. Iron–sulfur cluster biogenesis chaperones: evidence for emergence of mutational robustness of a highly specific protein–protein interaction. Mol. Biol. Evol. 33:643–56
    [Google Scholar]
  100. 99. 
    Vickery LE, Cupp-Vickery JR. 2007. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation. Crit. Rev. Biochem. Mol. Biol. 42:95–111
    [Google Scholar]
  101. 100. 
    Craig EA, Marszalek J. 2017. How do J-proteins get Hsp70 to do so many different things?. Trends Biochem. Sci. 42:355–68
    [Google Scholar]
  102. 101. 
    Shakamuri P, Zhang B, Johnson MK 2012. Monothiol glutaredoxins function in storing and transporting [Fe2S2] clusters assembled on IscU scaffold proteins. J. Am. Chem. Soc. 134:15213–16
    [Google Scholar]
  103. 102. 
    Dutkiewicz R, Schilke B, Cheng S, Knieszner H, Craig EA, Marszalek J 2004. Sequence-specific interaction between mitochondrial Fe-S scaffold protein Isu and Hsp70 Ssq1 is essential for their in vivo function. J. Biol. Chem. 279:29167–74
    [Google Scholar]
  104. 103. 
    Andrew AJ, Dutkiewicz R, Knieszner H, Craig EA, Marszalek J 2006. Characterization of the interaction between the J-protein Jac1 and the scaffold for Fe-S cluster biogenesis, Isu1. J. Biol. Chem. 281:14580–87
    [Google Scholar]
  105. 104. 
    Ciesielski SJ, Schilke BA, Osipiuk J, Bigelow L, Mulligan R et al. 2012. Interaction of J-protein co-chaperone Jac1 with Fe–S scaffold Isu is indispensable in vivo and conserved in evolution. J. Mol. Biol. 417:1–12
    [Google Scholar]
  106. 105. 
    Maio N, Singh A, Uhrigshardt H, Saxena N, Tong WH, Rouault TA 2014. Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery. Cell Metab 19:445–57
    [Google Scholar]
  107. 106. 
    Manicki M, Majewska J, Ciesielski S, Schilke B, Blenska A et al. 2014. Overlapping binding sites of the frataxin homologue assembly factor and the heat shock protein 70 transfer factor on the Isu iron-sulfur cluster scaffold protein. J. Biol. Chem. 289:30268–78
    [Google Scholar]
  108. 107. 
    Bandyopadhyay S, Gama F, Molina-Navarro MM, Gualberto JM, Claxton R et al. 2008. Chloroplast monothiol glutaredoxins as scaffold proteins for the assembly and delivery of [2Fe-2S] clusters. EMBO J 27:1122–33
    [Google Scholar]
  109. 108. 
    Herrero E, de la Torre-Ruiz MA 2007. Monothiol glutaredoxins: a common domain for multiple functions. Cell Mol. Life Sci. 64:1518–30
    [Google Scholar]
  110. 109. 
    Rouhier N, Couturier J, Johnson MK, Jacquot JP 2010. Glutaredoxins: roles in iron homeostasis. Trends Biochem. Sci. 35:43–52
    [Google Scholar]
  111. 110. 
    Uhrigshardt H, Singh A, Kovtunovych G, Ghosh M, Rouault TA 2010. Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron–sulfur cluster biogenesis. Hum. Mol. Genet. 19:3816–34
    [Google Scholar]
  112. 111. 
    Maio N, Rouault TA. 2016. Mammalian Fe–S proteins: definition of a consensus motif recognized by the co-chaperone HSC20. Metallomics 8:1032–46
    [Google Scholar]
  113. 112. 
    Maio N, Ghezzi D, Verrigni D, Rizza T, Bertini E et al. 2016. Disease-causing SDHAF1 mutations impair transfer of Fe-S clusters to SDHB. Cell Metab 23:292–302
    [Google Scholar]
  114. 113. 
    Maio N, Kim KS, Singh A, Rouault TA 2017. A single adaptable cochaperone-scaffold complex delivers nascent iron-sulfur clusters to mammalian respiratory chain complexes I–III. Cell Metab 25:945–53.e6
    [Google Scholar]
  115. 114. 
    Rouault TA. 2019. The indispensable role of mammalian iron sulfur proteins in function and regulation of multiple diverse metabolic pathways. Biometals 32:343–53
    [Google Scholar]
  116. 115. 
    Hoff KG, Cupp-Vickery JR, Vickery LE 2003. Contributions of the LPPVK motif of the iron-sulfur template protein IscU to interactions with the Hsc66-Hsc20 chaperone system. J. Biol. Chem. 278:37582–89
    [Google Scholar]
  117. 116. 
    Mühlenhoff U, Richter N, Pines O, Pierik AJ, Lill R 2011. Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial [4Fe-4S] proteins. J. Biol. Chem. 286:41205–16
    [Google Scholar]
  118. 117. 
    Sheftel AD, Wilbrecht C, Stehling O, Niggemeyer B, Elsasser HP et al. 2012. The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Mol. Biol. Cell 23:1157–66
    [Google Scholar]
  119. 118. 
    Song D, Tu Z, Lee FS 2009. Human ISCA1 interacts with IOP1/NARFL and functions in both cytosolic and mitochondrial iron-sulfur protein biogenesis. J. Biol. Chem. 284:35297–307
    [Google Scholar]
  120. 119. 
    Gelling C, Dawes IW, Richhardt N, Lill R, Mühlenhoff U 2008. Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol. Cell. Biol. 28:1851–61
    [Google Scholar]
  121. 120. 
    Long S, Changmai P, Tsaousis AD, Skalicky T, Verner Z et al. 2011. Stage-specific requirement for Isa1 and Isa2 proteins in the mitochondrion of Trypanosoma brucei and heterologous rescue by human and Blastocystis orthologues. Mol. Microbiol. 81:1403–18
    [Google Scholar]
  122. 121. 
    Beilschmidt LK, Ollagnier de Choudens S, Fournier M, Sanakis I, Hograindleur MA et al. 2017. ISCA1 is essential for mitochondrial Fe4S4 biogenesis in vivo. Nat. Commun. 8:15124
    [Google Scholar]
  123. 122. 
    Cameron JM, Janer A, Levandovskiy V, Mackay N, Rouault TA et al. 2011. Mutations in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am. J. Hum. Genet. 89:486–95
    [Google Scholar]
  124. 123. 
    Lebigot E, Gaignard P, Dorboz I, Slama A, Rio M et al. 2017. Impact of mutations within the [Fe-S] cluster or the lipoic acid biosynthesis pathways on mitochondrial protein expression profiles in fibroblasts from patients. Mol. Genet. Metab. 122:85–94
    [Google Scholar]
  125. 124. 
    Torraco A, Stehling O, Stumpfig C, Rosser R, De Rasmo D et al. 2018. ISCA1 mutation in a patient with infantile-onset leukodystrophy causes defects in mitochondrial [4Fe–4S] proteins. Hum. Mol. Genet. 27:2739–54
    [Google Scholar]
  126. 125. 
    Jensen LT, Culotta VC. 2000. Role of Saccharomyces cerevisiae ISA1 and ISA2 in iron homeostasis. Mol. Cell. Biol. 20:3918–27
    [Google Scholar]
  127. 126. 
    Kaut A, Lange H, Diekert K, Kispal G, Lill R 2000. Isa1p is a component of the mitochondrial machinery for maturation of cellular iron-sulfur proteins and requires conserved cysteine residues for function. J. Biol. Chem. 275:15955–61
    [Google Scholar]
  128. 127. 
    Pelzer W, Mühlenhoff U, Diekert K, Siegmund K, Kispal G, Lill R 2000. Mitochondrial Isa2p plays a crucial role in the maturation of cellular iron–sulfur proteins. FEBS Lett 476:134–39
    [Google Scholar]
  129. 128. 
    Wu G, Mansy SS, Hemann C, Hille R, Surerus KK, Cowan JA 2002. Iron-sulfur cluster biosynthesis: characterization of Schizosaccharomyces pombe Isa1. J. Biol. Inorg. Chem. 7:526–32
    [Google Scholar]
  130. 129. 
    Fidai I, Wachnowsky C, Cowan JA 2016. Mapping cellular Fe–S cluster uptake and exchange reactions—divergent pathways for iron–sulfur cluster delivery to human ferredoxins. Metallomics 8:1283–93
    [Google Scholar]
  131. 130. 
    Lu J, Bitoun JP, Tan G, Wang W, Min W, Ding H 2010. Iron-binding activity of human iron–sulfur cluster assembly protein hIscA1. Biochem. J. 428:125–31
    [Google Scholar]
  132. 131. 
    Gourdoupis S, Nasta V, Calderone V, Ciofi-Baffoni S, Banci L 2018. IBA57 recruits ISCA2 to form a [2Fe-2S] cluster-mediated complex. J. Am. Chem. Soc. 140:14401–12
    [Google Scholar]
  133. 132. 
    Alfadhel M, Nashabat M, Alrifai MT, Alshaalan H, Al Mutairi F et al. 2018. Further delineation of the phenotypic spectrum of ISCA2 defect: a report of ten new cases. Eur. J. Paediatr. Neurol. 22:46–55
    [Google Scholar]
  134. 133. 
    Al-Hassnan ZN, Al-Dosary M, Alfadhel M, Faqeih EA, Alsagob M et al. 2015. ISCA2 mutation causes infantile neurodegenerative mitochondrial disorder. J. Med. Genet. 52:186–94
    [Google Scholar]
  135. 134. 
    Alaimo JT, Besse A, Alston CL, Pang K, Appadurai V et al. 2018. Loss-of-function mutations in ISCA2 disrupt 4Fe-4S cluster machinery and cause a fatal leukodystrophy with hyperglycinemia and mtDNA depletion. Hum. Mutat. 39:537–49
    [Google Scholar]
  136. 135. 
    Toldo I, Nosadini M, Boscardin C, Talenti G, Manara R et al. 2018. Neonatal mitochondrial leukoencephalopathy with brain and spinal involvement and high lactate: expanding the phenotype of ISCA2 gene mutations. Metab. Brain Dis. 33:805–12
    [Google Scholar]
  137. 136. 
    Lossos A, Stumpfig C, Stevanin G, Gaussen M, Zimmerman BE et al. 2015. Fe/S protein assembly gene IBA57 mutation causes hereditary spastic paraplegia. Neurology 84:659–67
    [Google Scholar]
  138. 137. 
    Kim KD, Chung WH, Kim HJ, Lee KC, Roe JH 2010. Monothiol glutaredoxin Grx5 interacts with Fe–S scaffold proteins Isa1 and Isa2 and supports Fe–S assembly and DNA integrity in mitochondria of fission yeast. Biochem. Biophys. Res. Commun. 392:467–72
    [Google Scholar]
  139. 138. 
    Mapolelo DT, Zhang B, Randeniya S, Albetel AN, Li H et al. 2013. Monothiol glutaredoxins and A-type proteins: partners in Fe–S cluster trafficking. Dalton Trans 42:3107–15
    [Google Scholar]
  140. 139. 
    Banci L, Brancaccio D, Ciofi-Baffoni S, Del Conte R, Gadepalli R et al. 2014. [2Fe-2S] cluster transfer in iron–sulfur protein biogenesis. PNAS 111:6203–8
    [Google Scholar]
  141. 140. 
    Brancaccio D, Gallo A, Mikolajczyk M, Zovo K, Palumaa P et al. 2014. Formation of [4Fe-4S] clusters in the mitochondrial iron–sulfur cluster assembly machinery. J. Am. Chem. Soc. 136:16240–50
    [Google Scholar]
  142. 141. 
    Chandramouli K, Unciuleac MC, Naik S, Dean DR, Huynh BH, Johnson MK 2007. Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein. Biochemistry 46:6804–11
    [Google Scholar]
  143. 142. 
    Mapolelo DT, Zhang B, Naik SG, Huynh BH, Johnson MK 2012. Spectroscopic and functional characterization of iron–sulfur cluster-bound forms of Azotobacter vinelandiiNifIscA. Biochemistry 51:8071–84
    [Google Scholar]
  144. 143. 
    Rodriguez-Manzaneque MT, Tamarit J, Belli G, Ros J, Herrero E 2002. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol. Biol. Cell 13:1109–21
    [Google Scholar]
  145. 144. 
    Ye H, Jeong SY, Ghosh MC, Kovtunovych G, Silvestri L et al. 2010. Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. J. Clin. Invest. 120:1749–61
    [Google Scholar]
  146. 145. 
    Tong WH, Jameson GN, Huynh BH, Rouault TA 2003. Subcellular compartmentalization of human Nfu, an iron–sulfur cluster scaffold protein, and its ability to assemble a [4Fe-4S] cluster. PNAS 100:9762–67
    [Google Scholar]
  147. 146. 
    Cai K, Liu G, Frederick RO, Xiao R, Montelione GT, Markley JL 2016. Structural/functional properties of human NFU1, an intermediate [4Fe-4S] carrier in human mitochondrial iron-sulfur cluster biogenesis. Structure 24:2080–91
    [Google Scholar]
  148. 147. 
    Touraine B, Boutin JP, Marion-Poll A, Briat JF, Peltier G, Lobreaux S 2004. Nfu2: a scaffold protein required for [4Fe-4S] and ferredoxin iron-sulphur cluster assembly in Arabidopsis chloroplasts. Plant J 40:101–11
    [Google Scholar]
  149. 148. 
    Yabe T, Morimoto K, Kikuchi S, Nishio K, Terashima I, Nakai M 2004. The Arabidopsis chloroplastic NifU-like protein CnfU, which can act as an iron-sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and photosystem I. Plant Cell 16:993–1007
    [Google Scholar]
  150. 149. 
    McCarthy EL, Booker SJ. 2017. Destruction and reformation of an iron-sulfur cluster during catalysis by lipoyl synthase. Science 358:373–77
    [Google Scholar]
  151. 150. 
    Benz C, Kovarova J, Kralova-Hromadova I, Pierik AJ, Lukes J 2016. Roles of the Nfu Fe–S targeting factors in the trypanosome mitochondrion. Int. J. Parasitol. 46:641–51
    [Google Scholar]
  152. 151. 
    Uzarska MA, Przybyla-Toscano J, Spantgar F, Zannini F, Lill R et al. 2018. Conserved functions of Arabidopsis mitochondrial late-acting maturation factors in the trafficking of iron-sulfur clusters. Biochim. Biophys. Acta Mol. Cell Res. 1865:1250–59
    [Google Scholar]
  153. 152. 
    Melber A, Na U, Vashisht A, Weiler BD, Lill R et al. 2016. Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients. eLife 5:e15991
    [Google Scholar]
  154. 153. 
    Uzarska MA, Nasta V, Weiler BD, Spantgar F, Ciofi-Baffoni S et al. 2016. Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins. eLife 5:e16673
    [Google Scholar]
  155. 154. 
    Bych K, Kerscher S, Netz DJ, Pierik AJ, Zwicker K et al. 2008. The iron–sulphur protein Ind1 is required for effective complex I assembly. EMBO J 27:1736–46
    [Google Scholar]
  156. 155. 
    Sheftel AD, Stehling O, Pierik AJ, Netz DJ, Kerscher S et al. 2009. Human ind1, an iron-sulfur cluster assembly factor for respiratory complex I. Mol. Cell. Biol. 29:6059–73
    [Google Scholar]
  157. 156. 
    Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G et al. 2010. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat. Genet. 42:851–58
    [Google Scholar]
  158. 157. 
    Stehling O, Jeoung JH, Freibert SA, Paul VD, Banfer S et al. 2018. Function and crystal structure of the dimeric P-loop ATPase CFD1 coordinating an exposed [4Fe-4S] cluster for transfer to apoproteins. PNAS 115:E9085–94
    [Google Scholar]
  159. 158. 
    Maclean AE, Kimonis VE, Balk J 2018. Pathogenic mutations in NUBPL affect complex I activity and cold tolerance in the yeast model Yarrowia lipolytica. Hum. Mol. Genet 27:3697–709
    [Google Scholar]
  160. 159. 
    Wydro MM, Sharma P, Foster JM, Bych K, Meyer EH, Balk J 2013. The evolutionarily conserved iron-sulfur protein INDH1 is required for complex I assembly and mitochondrial translation in Arabidopsis. Plant Cell 25:4014–27
    [Google Scholar]
  161. 160. 
    Nasta V, Giachetti A, Ciofi-Baffoni S, Banci L 2017. Structural insights into the molecular function of human [2Fe-2S] BOLA1-GRX5 and [2Fe-2S] BOLA3-GRX5 complexes. Biochim. Biophys. Acta Gen. Subj. 1861:2119–31
    [Google Scholar]
  162. 161. 
    Willems P, Wanschers BF, Esseling J, Szklarczyk R, Kudla U et al. 2013. BOLA1 is an aerobic protein that prevents mitochondrial morphology changes induced by glutathione depletion. Antioxid. Redox Signal. 18:129–38
    [Google Scholar]
  163. 162. 
    Beilschmidt LK, Puccio HM. 2014. Mammalian Fe–S cluster biogenesis and its implication in disease. Biochimie 100:48–60
    [Google Scholar]
  164. 163. 
    Stehling O, Wilbrecht C, Lill R 2014. Mitochondrial iron–sulfur protein biogenesis and human disease. Biochimie 100:61–77
    [Google Scholar]
  165. 164. 
    Maio N, Rouault TA. 2015. Iron–sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery. Biochim. Biophys. Acta Mol. Cell Res. 1853:1493–512
    [Google Scholar]
  166. 165. 
    Frazier AE, Thorburn DR, Compton AG 2019. Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology. J. Biol. Chem. 294:5386–95
    [Google Scholar]
  167. 166. 
    Schmitz-Abe K, Ciesielski SJ, Schmidt PJ, Campagna DR, Rahimov F et al. 2015. Congenital sidero-blastic anemia due to mutations in the mitochondrial HSP70 homologue HSPA9. Blood 126:2734–38
    [Google Scholar]
  168. 167. 
    Camaschella C, Campanella A, De Falco L, Boschetto L, Merlini R et al. 2007. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood 110:1353–58
    [Google Scholar]
  169. 168. 
    Mayr JA, Feichtinger RG, Tort F, Ribes A, Sperl W 2014. Lipoic acid biosynthesis defects. J. Inherit. Metab. Dis. 37:553–63
    [Google Scholar]
  170. 169. 
    Önder O, Yoon H, Naumann B, Hippler M, Dancis A, Daldal F 2006. Modifications of the lipoamide-containing mitochondrial subproteome in a yeast mutant defective in cysteine desulfurase. Mol. Cell. Proteom. 5:1426–36
    [Google Scholar]
  171. 170. 
    Baker PR 2nd, Friederich MW, Swanson MA, Shaikh T, Bhattacharya K et al. 2014. Variant non ketotic hyperglycinemia is caused by mutations in LIAS, BOLA3 and the novel gene GLRX5. Brain 137:366–79
    [Google Scholar]
  172. 171. 
    Ajit Bolar N, Vanlander AV, Wilbrecht C, Van der Aa N, Smet J et al. 2013. Mutation of the iron-sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy. Hum. Mol. Genet. 22:2590–602
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-013118-111540
Loading
/content/journals/10.1146/annurev-biochem-013118-111540
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error