1932

Abstract

Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell–substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071114-040654
2016-07-11
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/18/1/annurev-bioeng-071114-040654.html?itemId=/content/journals/10.1146/annurev-bioeng-071114-040654&mimeType=html&fmt=ahah

Literature Cited

  1. Friedl P, Alexander S. 1.  2011. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147:992–1009 [Google Scholar]
  2. Hung WC, Chen SH, Paul CD, Stroka KM, Lo YC. 2.  et al. 2013. Distinct signaling mechanisms regulate migration in unconfined versus confined spaces. J. Cell Biol. 202:807–24 [Google Scholar]
  3. Tong Z, Balzer EM, Dallas MR, Hung WC, Stebe KJ, Konstantopoulos K. 3.  2012. Chemotaxis of cell populations through confined spaces at single-cell resolution. PLOS ONE 7:e29211 [Google Scholar]
  4. Stroka KM, Jiang H, Chen SH, Tong Z, Wirtz D. 4.  et al. 2014. Water permeation drives tumor cell migration in confined microenvironments. Cell 157:611–23 [Google Scholar]
  5. Friedl P, Wolf K. 5.  2010. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188:11–19 [Google Scholar]
  6. Montell DJ.6.  2003. Border-cell migration: The race is on. Nat. Rev. Mol. Cell Biol. 4:13–24 [Google Scholar]
  7. Herbert SP, Stainier DYR. 7.  2011. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat. Rev. Mol. Cell Biol. 12:551–64 [Google Scholar]
  8. Luster AD, Alon R, von Andrian UH. 8.  2005. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6:1182–90 [Google Scholar]
  9. Friedl P, Weigelin B. 9.  2008. Interstitial leukocyte migration and immune function. Nat. Immunol. 9:960–69 [Google Scholar]
  10. Wrobel MR, Sundararaghavan HG. 10.  2014. Directed migration in neural tissue engineering. Tissue Eng. B 20:93–105 [Google Scholar]
  11. Condeelis J, Segall JE. 11.  2003. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3:921–30 [Google Scholar]
  12. Ananthakrishnan R, Ehrlicher A. 12.  2007. The forces behind cell movement. Int. J. Biol. Sci. 3:303–17 [Google Scholar]
  13. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH. 13.  et al. 2003. Cell migration: integrating signals from front to back. Science 302:1704–9 [Google Scholar]
  14. Balzer EM, Tong Z, Paul CD, Hung WC, Stroka KM. 14.  et al. 2012. Physical confinement alters tumor cell adhesion and migration phenotypes. FASEB J. 26:4045–56 [Google Scholar]
  15. Liu YJ, Le Berre M, Lautenschlaeger F, Maiuri P, Callan-Jones A. 15.  et al. 2015. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160:659–72 [Google Scholar]
  16. Petrie RJ, Gavara N, Chadwick RS, Yamada KM. 16.  2012. Nonpolarized signaling reveals two distinct modes of 3D cell migration. J. Cell Biol. 197:439–55 [Google Scholar]
  17. Petrie RJ, Koo H, Yamada KM. 17.  2014. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345:1062–65 [Google Scholar]
  18. Sackmann EK, Fulton AL, Beebe DJ. 18.  2014. The present and future role of microfluidics in biomedical research. Nature 507:181–89 [Google Scholar]
  19. Berthier E, Young EW, Beebe DJ. 19.  2012. Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip 12:1224–37 [Google Scholar]
  20. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM. 20.  1998. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70:4974–84 [Google Scholar]
  21. Heuzé ML, Collin O, Terriac E, Lennon-Duménil AM, Piel M. 21.  2011. Cell migration in confinement: a micro-channel-based assay. Methods Mol. Biol. 769:415–34 [Google Scholar]
  22. Irimia D, Charras G, Agrawal N, Mitchison T, Toner M. 22.  2007. Polar stimulation and constrained cell migration in microfluidic channels. Lab Chip 7:1783–90 [Google Scholar]
  23. Irimia D, Toner M. 23.  2009. Spontaneous migration of cancer cells under conditions of mechanical confinement. Integr. Biol. 1:506–12 [Google Scholar]
  24. Alexander S, Koehl GE, Hirschberg M, Geissler EK, Friedl P. 24.  2008. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem. Cell Biol. 130:1147–54 [Google Scholar]
  25. Alexander S, Weigelin B, Winkler F, Friedl P. 25.  2013. Preclinical intravital microscopy of the tumour–stroma interface: invasion, metastasis, and therapy response. Curr. Opin. Cell Biol. 25:659–71 [Google Scholar]
  26. Weigelin B, Bakker G-J, Friedl P. 26.  2012. Intravital third harmonic generation microscopy of collective melanoma cell invasion: principles of interface guidance and microvesicle dynamics. IntraVital 1:32–43 [Google Scholar]
  27. Yamauchi K, Yang M, Hayashi K, Jiang P, Yamamoto N. 27.  et al. 2008. Induction of cancer metastasis by cyclophosphamide pretreatment of host mice: an opposite effect of chemotherapy. Cancer Res. 68:516–20 [Google Scholar]
  28. Yamauchi K, Yang M, Jiang P, Yamamoto N, Xu M. 28.  et al. 2005. Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res. 65:4246–52 [Google Scholar]
  29. Cuddapah VA, Robel S, Watkins S, Sontheimer H. 29.  2014. A neurocentric perspective on glioma invasion. Nat. Rev. Neurosci. 15:455–65 [Google Scholar]
  30. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF. 30.  et al. 2007. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat. Cell Biol. 9:1392–400 [Google Scholar]
  31. Kraning-Rush CM, Carey SP, Lampi MC, Reinhart-King CA. 31.  2013. Microfabricated collagen tracks facilitate single cell metastatic invasion in 3D. Integr. Biol. 5:606–16 [Google Scholar]
  32. Mak M, Reinhart-King CA, Erickson D. 32.  2011. Microfabricated physical spatial gradients for investigating cell migration and invasion dynamics. PLOS ONE 6:e20825 [Google Scholar]
  33. Mak M, Reinhart-King CA, Erickson D. 33.  2013. Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device. Lab Chip 13:340–48 [Google Scholar]
  34. Pathak A, Kumar S. 34.  2013. Transforming potential and matrix stiffness co-regulate confinement sensitivity of tumor cell migration. Integr. Biol. 5:1067–75 [Google Scholar]
  35. Prentice-Mott HV, Chang CH, Mahadevan L, Mitchison TJ, Irimia D, Shah JV. 35.  2013. Biased migration of confined neutrophil-like cells in asymmetric hydraulic environments. PNAS 110:21006–11 [Google Scholar]
  36. Raman PS, Paul CD, Stroka KM, Konstantopoulos K. 36.  2013. Probing cell traction forces in confined microenvironments. Lab Chip 13:4599–607 [Google Scholar]
  37. Rolli CG, Seufferlein T, Kemkemer R, Spatz JP. 37.  2010. Impact of tumor cell cytoskeleton organization on invasiveness and migration: a microchannel-based approach. PLOS ONE 5:e8726 [Google Scholar]
  38. Roussos ET, Condeelis JS, Patsialou A. 38.  2011. Chemotaxis in cancer. Nat. Rev. Cancer 11:573–87 [Google Scholar]
  39. Weninger W, Biro M, Jain R. 39.  2014. Leukocyte migration in the interstitial space of non-lymphoid organs. Nat. Rev. Immunol. 14:232–46 [Google Scholar]
  40. Breckenridge MT, Egelhoff TT, Baskaran H. 40.  2010. A microfluidic imaging chamber for the direct observation of chemotactic transmigration. Biomed. Microdevices 12:543–53 [Google Scholar]
  41. Wang P, Chen SH, Hung WC, Paul C, Zhu F. 41.  et al. 2015. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways. Oncogene 34:4558–69 [Google Scholar]
  42. Chen SH, Hung WC, Wang P, Paul C, Konstantopoulos K. 42.  2013. Mesothelin binding to CA125/MUC16 promotes pancreatic cancer cell motility and invasion via MMP-7 activation. Sci. Rep. 3:1870 [Google Scholar]
  43. Zhang Y, Zhang W, Qin L. 43.  2014. Mesenchymal-mode migration assay and antimetastatic drug screening with high-throughput microfluidic channel networks. Angew. Chem. Int. Ed. Engl. 53:2344–48 [Google Scholar]
  44. Mycielska ME, Djamgoz MB. 44.  2004. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J. Cell Sci. 117:1631–39 [Google Scholar]
  45. Nuccitelli R.45.  2003. A role for endogenous electric fields in wound healing. Curr. Top. Dev. Biol. 58:1–26 [Google Scholar]
  46. Huang YJ, Samorajski J, Kreimer R, Searson PC. 46.  2013. The influence of electric field and confinement on cell motility. PLOS ONE 8:e59447 [Google Scholar]
  47. Mak M, Erickson D. 47.  2014. Mechanical decision trees for investigating and modulating single-cell cancer invasion dynamics. Lab Chip 14:964–71 [Google Scholar]
  48. Scherber C, Aranyosi AJ, Kulemann B, Thayer SP, Toner M. 48.  et al. 2012. Epithelial cell guidance by self-generated EGF gradients. Integr. Biol. 4:259–69 [Google Scholar]
  49. Ambravaneswaran V, Wong IY, Aranyosi AJ, Toner M, Irimia D. 49.  2010. Directional decisions during neutrophil chemotaxis inside bifurcating channels. Integr. Biol. 2:639–47 [Google Scholar]
  50. Kim DH, Provenzano PP, Smith CL, Levchenko A. 50.  2012. Matrix nanotopography as a regulator of cell function. J. Cell Biol. 197:351–60 [Google Scholar]
  51. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. 51.  2006. Collagen reorganization at the tumor–stromal interface facilitates local invasion. BMC Med. 4:38 [Google Scholar]
  52. Gallego-Perez D, Higuita-Castro N, Denning L, DeJesus J, Dahl K. 52.  et al. 2012. Microfabricated mimics of in vivo structural cues for the study of guided tumor cell migration. Lab Chip 12:4424–32 [Google Scholar]
  53. Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF. 53.  2003. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116:1881–92 [Google Scholar]
  54. Hamilton DW, Oates CJ, Hasanzadeh A, Mittler S. 54.  2010. Migration of periodontal ligament fibroblasts on nanometric topographical patterns: influence of filopodia and focal adhesions on contact guidance. PLOS ONE 5:e15129 [Google Scholar]
  55. Kim D-H, Han K, Gupta K, Kwon KW, Suh K-Y, Levchenko A. 55.  2009. Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30:5433–44 [Google Scholar]
  56. Oakley C, Brunette DM. 56.  1993. The sequence of alignment of microtubules, focal contacts and actin filaments in fibroblasts spreading on smooth and grooved titanium substrata. J. Cell Sci. 106:343–54 [Google Scholar]
  57. Londono C, Loureiro MJ, Slater B, Lucker PB, Soleas J. 57.  et al. 2014. Nonautonomous contact guidance signaling during collective cell migration. PNAS 111:1807–12 [Google Scholar]
  58. Worley KE, Shieh D, Wan LQ. 58.  2015. Inhibition of cell–cell adhesion impairs directional epithelial migration on micropatterned surfaces. Integr. Biol. 7:580–90 [Google Scholar]
  59. Vedula SR, Leong MC, Lai TL, Hersen P, Kabla AJ. 59.  et al. 2012. Emerging modes of collective cell migration induced by geometrical constraints. PNAS 109:12974–79 [Google Scholar]
  60. Théry M, Piel M. 60.  2009. Adhesive micropatterns for cells: a microcontact printing protocol. Cold Spring Harb. Protoc. 4:1–11 [Google Scholar]
  61. Maiuri P, Terriac E, Paul-Gilloteaux P, Vignaud T, McNally K. 61.  et al. 2012. The first World Cell Race. Curr. Biol. 22:R673–75 [Google Scholar]
  62. Alom Ruiz S, Chen CS. 62.  2007. Microcontact printing: a tool to pattern. Soft Matter 3:168–77 [Google Scholar]
  63. Tan JL, Liu W, Nelson CM, Raghavan S, Chen CS. 63.  2004. Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Eng. 10:865–72 [Google Scholar]
  64. Desai RA, Rodriguez NM, Chen CS. 64.  2014. “Stamp-off” to micropattern sparse, multicomponent features. Methods Cell Biol. 119:3–16 [Google Scholar]
  65. Doyle AD, Wang FW, Matsumoto K, Yamada KM. 65.  2009. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184:481–90 [Google Scholar]
  66. Wong S, Guo WH, Wang YL. 66.  2014. Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area. PNAS 111:17176–81 [Google Scholar]
  67. Sharma VP, Beaty BT, Patsialou A, Liu H, Clarke M. 67.  et al. 2012. Reconstitution of in vivo macrophage–tumor cell pairing and streaming motility on one-dimensional micro-patterned substrates. IntraVital 1:77–85 [Google Scholar]
  68. Wang W, Wyckoff JB, Goswami S, Wang Y, Sidani M. 68.  et al. 2007. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res. 67:3505–11 [Google Scholar]
  69. Leong MC, Vedula SR, Lim CT, Ladoux B. 69.  2013. Geometrical constraints and physical crowding direct collective migration of fibroblasts. Commun. Integr. Biol. 6:e23197 [Google Scholar]
  70. Pouthas F, Girard P, Lecaudey V, Ly TB, Gilmour D. 70.  et al. 2008. In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum. J. Cell Sci. 121:2406–14 [Google Scholar]
  71. Khatau SB, Hale CM, Stewart-Hutchinson PJ, Patel MS, Stewart CL. 71.  et al. 2009. A perinuclear actin cap regulates nuclear shape. PNAS 106:19017–22 [Google Scholar]
  72. Kim DH, Cho S, Wirtz D. 72.  2014. Tight coupling between nucleus and cell migration through the perinuclear actin cap. J. Cell Sci. 127:2528–41 [Google Scholar]
  73. Maiuri P, Rupprecht JF, Wieser S, Ruprecht V, Bénichou O. 73.  et al. 2015. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 161:374–86 [Google Scholar]
  74. Chang SS, Guo WH, Kim Y, Wang YL. 74.  2013. Guidance of cell migration by substrate dimension. Biophys. J. 104:313–21 [Google Scholar]
  75. Théry M, Racine V, Piel M, Pepin A, Dimitrov A. 75.  et al. 2006. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. PNAS 103:19771–76 [Google Scholar]
  76. Chen B, Kumar G, Co CC, Ho CC. 76.  2013. Geometric control of cell migration. Sci. Rep. 3:2827 [Google Scholar]
  77. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. 77.  2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–95 [Google Scholar]
  78. Rape A, Guo WH, Wang YL. 78.  2011. The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials 32:2043–51 [Google Scholar]
  79. Tee S-Y, Fu J, Chen CS, Janmey PA. 79.  2011. Cell shape and substrate rigidity both regulate cell stiffness. Biophys. J. 100:L25–27 [Google Scholar]
  80. Dembo M, Wang YL. 80.  1999. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76:2307–16 [Google Scholar]
  81. Fu J, Wang Y-K, Yang MT, Desai RA, Yu X. 81.  et al. 2010. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7:733–36 [Google Scholar]
  82. Hoffecker IT, Guo WH, Wang YL. 82.  2011. Assessing the spatial resolution of cellular rigidity sensing using a micropatterned hydrogel–photoresist composite. Lab Chip 11:3538–44 [Google Scholar]
  83. Tozluoglu M, Tournier AL, Jenkins RP, Hooper S, Bates PA, Sahai E. 83.  2013. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat. Cell Biol. 15:751–62 [Google Scholar]
  84. Le Berre M, Zlotek-Zlotkiewicz E, Bonazzi D, Lautenschlaeger F, Piel M. 84.  2014. Methods for two-dimensional cell confinement. Methods Cell Biol. 121:213–29 [Google Scholar]
  85. Le Berre M, Aubertin J, Piel M. 85.  2012. Fine control of nuclear confinement identifies a threshold deformation leading to lamina rupture and induction of specific genes. Integr. Biol. 4:1406–14 [Google Scholar]
  86. Rape AD, Kumar S. 86.  2014. A composite hydrogel platform for the dissection of tumor cell migration at tissue interfaces. Biomaterials 35:8846–53 [Google Scholar]
  87. Wolf K, Alexander S, Schacht V, Coussens LM, von Andrian UH. 87.  et al. 2009. Collagen-based cell migration models in vitro and in vivo. Semin. Cell Dev. Biol. 20:931–41 [Google Scholar]
  88. Wolf K, Te Lindert M, Krause M, Alexander S, Te Riet J. 88.  et al. 2013. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201:1069–84 [Google Scholar]
  89. Haeger A, Krause M, Wolf K, Friedl P. 89.  2014. Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim. Biophys. Acta 1840:2386–95 [Google Scholar]
  90. Hakkinen KM, Harunaga JS, Doyle AD, Yamada KM. 90.  2011. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng. A 17:713–24 [Google Scholar]
  91. DeForest CA, Anseth KS. 91.  2011. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 3:925–31 [Google Scholar]
  92. DeForest CA, Anseth KS. 92.  2012. Photoreversible patterning of biomolecules within click-based hydrogels. Angew. Chem. Int. Ed. Engl. 51:1816–19 [Google Scholar]
  93. Mosiewicz KA, Kolb L, van der Vlies AJ, Martino MM, Lienemann PS. 93.  et al. 2013. In situ cell manipulation through enzymatic hydrogel photopatterning. Nat. Mater. 12:1072–78 [Google Scholar]
  94. Kloxin AM, Tibbitt MW, Anseth KS. 94.  2010. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nat. Protoc. 5:1867–87 [Google Scholar]
  95. Kirschner CM, Anseth KS. 95.  2013. In situ control of cell substrate microtopographies using photolabile hydrogels. Small 9:578–84 [Google Scholar]
  96. Ilina O, Bakker G-J, Vasaturo A, Hofmann RM, Friedl P. 96.  2011. Two-photon laser-generated microtracks in 3D collagen lattices: principles of MMP-dependent and -independent collective cancer cell invasion. Phys. Biol. 8:015010 [Google Scholar]
  97. Pathak A, Kumar S. 97.  2012. Independent regulation of tumor cell migration by matrix stiffness and confinement. PNAS 109:10334–39 [Google Scholar]
  98. Carey SP, Rahman A, Kraning-Rush CM, Romero B, Somasegar S. 98.  et al. 2015. Comparative mechanisms of cancer cell migration through 3D matrix and physiological microtracks. Am. J. Physiol. Cell Physiol. 308:436–47 [Google Scholar]
  99. Guilluy C, Swaminathan V, Garcia-Mata R, O'Brien ET, Superfine R, Burridge K. 99.  2011. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat. Cell Biol. 13:722–27 [Google Scholar]
  100. Takemoto K, Ishihara S, Mizutani T, Kawabata K, Haga H. 100.  2015. Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway. PLOS ONE 10:e0117937 [Google Scholar]
  101. Mizutani T, Kawabata K, Koyama Y, Takahashi M, Haga H. 101.  2009. Regulation of cellular contractile force in response to mechanical stretch by diphosphorylation of myosin regulatory light chain via RhoA signaling cascade. Cell Motil. Cytoskelet. 66:389–97 [Google Scholar]
  102. Kaunas R, Nguyen P, Usami S, Chien S. 102.  2005. Cooperative effects of Rho and mechanical stretch on stress fiber organization. PNAS 102:15895–900 [Google Scholar]
  103. Fernandez-Gonzalez R, de Matos Simoes S, Röper JC, Eaton S, Zallen JA. 103.  2009. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17:736–43 [Google Scholar]
  104. Srivastava V, Robinson DN. 104.  2015. Mechanical stress and network structure drive protein dynamics during cytokinesis. Curr. Biol. 25:663–70 [Google Scholar]
  105. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC. 105.  et al. 2013. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104 [Google Scholar]
  106. Stroka KM, Gu Z, Sun SX, Konstantopoulos K. 106.  2014. Bioengineering paradigms for cell migration in confined microenvironments. Curr. Opin. Cell Biol. 30:41–50 [Google Scholar]
  107. Risca VI, Wang EB, Chaudhuri O, Chia JJ, Geissler PL, Fletcher DA. 107.  2012. Actin filament curvature biases branching direction. PNAS 109:2913–18 [Google Scholar]
  108. Miyazaki M, Chiba M, Eguchi H, Ohki T, Ishiwata S. 108.  2015. Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings in vitro. Nat. Cell Biol. 17:480–89 [Google Scholar]
  109. Iskratsch T, Wolfenson H, Sheetz MP. 109.  2014. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15:825–33 [Google Scholar]
  110. Fischer RS, Gardel M, Ma X, Adelstein RS, Waterman CM. 110.  2009. Local cortical tension by myosin II guides 3D endothelial cell branching. Curr. Biol. 19:260–65 [Google Scholar]
  111. Elliott H, Fischer RS, Myers KA, Desai RA, Gao L. 111.  et al. 2015. Myosin II controls cellular branching morphogenesis and migration in three dimensions by minimizing cell-surface curvature. Nat. Cell Biol. 17:137–47 [Google Scholar]
  112. Totsukawa G, Yamakita Y, Yamashiro S, Hartshorne DJ, Sasaki Y, Matsumura F. 112.  2000. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3T3 fibroblasts. J. Cell Biol. 150:797–806 [Google Scholar]
  113. Pouille PA, Ahmadi P, Brunet AC, Farge E. 113.  2009. Mechanical signals trigger myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci. Signal. 2:ra16 [Google Scholar]
  114. Effler JC, Kee YS, Berk JM, Tran MN, Iglesias PA, Robinson DN. 114.  2006. Mitosis-specific mechanosensing and contractile-protein redistribution control cell shape. Curr. Biol. 16:1962–67 [Google Scholar]
  115. Ren Y, Effler JC, Norstrom M, Luo T, Firtel RA. 115.  et al. 2009. Mechanosensing through cooperative interactions between myosin II and the actin crosslinker cortexillin I. Curr. Biol. 19:1421–28 [Google Scholar]
  116. Kee YS, Ren Y, Dorfman D, Iijima M, Firtel R. 116.  et al. 2012. A mechanosensory system governs myosin II accumulation in dividing cells. Mol. Biol. Cell 23:1510–23 [Google Scholar]
  117. Saito AC, Matsui TS, Ohishi T, Sato M, Deguchi S. 117.  2014. Contact guidance of smooth muscle cells is associated with tension-mediated adhesion maturation. Exp. Cell Res. 327:1–11 [Google Scholar]
  118. Frey MT, Tsai IY, Russell TP, Hanks SK, Wang YL. 118.  2006. Cellular responses to substrate topography: role of myosin II and focal adhesion kinase. Biophys. J. 90:3774–82 [Google Scholar]
  119. Torsoni AS, Marin TM, Velloso LA, Franchini KG. 119.  2005. RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 289:1488–96 [Google Scholar]
  120. Liu WF, Nelson CM, Tan JL, Chen CS. 120.  2007. Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells. Circ. Res. 101:e44–52 [Google Scholar]
  121. Matthews BD, Overby DR, Mannix R, Ingber DE. 121.  2006. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J. Cell Sci. 119:508–18 [Google Scholar]
  122. Haudenschild DR, Chen J, Pang N, Lotz MK, D'Lima DD. 122.  2010. Rho kinase–dependent activation of SOX9 in chondrocytes. Arthritis Rheum. 62:191–200 [Google Scholar]
  123. Ceelen KK, Oomens CWJ, Stekelenburg A, Bader DL, Baaijens FPT. 123.  2009. Changes in intracellular calcium during compression of C2C12 myotubes. Exp. Mech. 49:25–33 [Google Scholar]
  124. Sopko NA, Hannan JL, Bivalacqua TJ. 124.  2014. Understanding and targeting the Rho kinase pathway in erectile dysfunction. Nat. Rev. Urol. 11:622–28 [Google Scholar]
  125. Puetz S, Lubomirov LT, Pfitzer G. 125.  2009. Regulation of smooth muscle contraction by small GTPases. Physiology 24:342–56 [Google Scholar]
  126. Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y. 126.  et al. 2012. Mechanical compression drives cancer cells toward invasive phenotype. PNAS 109:911–16 [Google Scholar]
  127. Doyle AD, Kutys ML, Conti MA, Matsumoto K, Adelstein RS, Yamada KM. 127.  2012. Micro-environmental control of cell migration—myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics. J. Cell Sci. 125:2244–56 [Google Scholar]
  128. Jain N, Iyer KV, Kumar A, Shivashankar GV. 128.  2013. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. PNAS 110:11349–54 [Google Scholar]
  129. Roca-Cusachs P, Alcaraz J, Sunyer R, Samitier J, Farré R, Navajas D. 129.  2008. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys. J. 94:4984–95 [Google Scholar]
  130. Dalby MJ, Riehle MO, Yarwood SJ, Wilkinson CD, Curtis AS. 130.  2003. Nucleus alignment and cell signaling in fibroblasts: response to a micro-grooved topography. Exp. Cell Res. 284:274–82 [Google Scholar]
  131. Mammoto A, Huang S, Moore K, Oh P, Ingber DE. 131.  2004. Role of RhoA, mDia, and ROCK in cell shape–dependent control of the Skp2–p27kip1 pathway and the G1/S transition. J. Biol. Chem. 279:26323–30 [Google Scholar]
  132. Brown JL, Stowers L, Baer M, Trejo J, Coughlin S, Chant J. 132.  1996. Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr. Biol. 6:598–605 [Google Scholar]
  133. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S. 133.  et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–83 [Google Scholar]
  134. Thomas CH, Collier JH, Sfeir CS, Healy KE. 134.  2002. Engineering gene expression and protein synthesis by modulation of nuclear shape. PNAS 99:1972–77 [Google Scholar]
  135. Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R. 135.  et al. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55 [Google Scholar]
  136. Jain A, Betancur M, Patel GD, Valmikinathan CM, Mukhatyar VJ. 136.  et al. 2014. Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nat. Mater. 13:308–16 [Google Scholar]
  137. Wong SY, Ulrich TA, Deleyrolle LP, MacKay JL, Lin JM. 137.  et al. 2015. Constitutive activation of myosin-dependent contractility sensitizes glioma tumor-initiating cells to mechanical inputs and reduces tissue invasion. Cancer Res. 75:1113–22 [Google Scholar]
  138. Hoang AN, Jones CN, Dimisko L, Hamza B, Martel J. 138.  et al. 2013. Measuring neutrophil speed and directionality during chemotaxis, directly from a droplet of whole blood. Technology 1:49 [Google Scholar]
  139. Butler KL, Ambravaneswaran V, Agrawal N, Bilodeau M, Toner M. 139.  et al. 2010. Burn injury reduces neutrophil directional migration speed in microfluidic devices. PLOS ONE 5:e11921 [Google Scholar]
  140. Jones CN, Moore M, Dimisko L, Alexander A, Ibrahim A. 140.  et al. 2014. Spontaneous neutrophil migration patterns during sepsis after major burns. PLOS ONE 9:e114509 [Google Scholar]
  141. Kurihara T, Jones CN, Yu YM, Fischman AJ, Watada S. 141.  et al. 2013. Resolvin D2 restores neutrophil directionality and improves survival after burns. FASEB J. 27:2270–81 [Google Scholar]
  142. Nery FC, da Hora CC, Atai NA, Kim EY, Hettich J. 142.  et al. 2014. Microfluidic platform to evaluate migration of cells from patients with DYT1 dystonia. J. Neurosci. Methods 232:181–88 [Google Scholar]
  143. Cho H, Hashimoto T, Wong E, Hori Y, Wood LB. 143.  et al. 2013. Microfluidic chemotaxis platform for differentiating the roles of soluble and bound amyloid-β on microglial accumulation. Sci. Rep. 3:1823 [Google Scholar]
  144. Hamza B, Irimia D. 144.  2015. Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation. Lab Chip 15:2625–33 [Google Scholar]
  145. Agus DB, Alexander JF, Arap W, Ashili S, Aslan JE. 145.  et al. 2013. A physical sciences network characterization of non-tumorigenic and metastatic cells. Sci. Rep. 3:1449 [Google Scholar]
  146. Lecuit T, Le Goff L. 146.  2007. Orchestrating size and shape during morphogenesis. Nature 450:189–92 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071114-040654
Loading
/content/journals/10.1146/annurev-bioeng-071114-040654
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error