1932

Abstract

Synapses, the fundamental unit in neuronal circuits, are critical for learning and memory, perception, thinking, and reaction. The neuromuscular junction (NMJ) is a synapse formed between motoneurons and skeletal muscle fibers that is covered by Schwann cells (SCs). It is essential for controlling muscle contraction. NMJ formation requires intimate interactions among motoneurons, muscles, and SCs. Deficits in NMJ formation and maintenance cause neuromuscular disorders, including congenital myasthenic syndrome and myasthenia gravis. NMJ decline occurs in aged animals and may appear before clinical presentation of motoneuron disorders such as amyotrophic lateral sclerosis. We review recent findings in NMJ formation, maintenance, neuromuscular disorders, and aging of the NMJ, focusing on communications among motoneurons, muscles and SCs, and underlying mechanisms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-022516-034255
2018-02-10
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/80/1/annurev-physiol-022516-034255.html?itemId=/content/journals/10.1146/annurev-physiol-022516-034255&mimeType=html&fmt=ahah

Literature Cited

  1. Kummer TT, Misgeld T, Sanes JR. 1.  2006. Assembly of the postsynaptic membrane at the neuromuscular junction: paradigm lost. Curr. Opin. Neurobiol. 1674–82
  2. Shi L, Fu AK, Ip NY. 2.  2012. Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 35441–53
  3. Tintignac LA, Brenner HR, Ruegg MA. 3.  2015. Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol. Rev. 95809–52
  4. Wu H, Xiong WC, Mei L. 4.  2010. To build a synapse: signaling pathways in neuromuscular junction assembly. Development 1371017–33
  5. Darabid H, Perez-Gonzalez AP, Robitaille R. 5.  2014. Neuromuscular synaptogenesis: coordinating partners with multiple functions. Nat. Rev. Neurosci. 15703–18
  6. McMahan UJ.6.  1990. The agrin hypothesis. Cold Spring Harb. Symp. Quant. Biol. 55407–18
  7. Ruegg MA, Bixby JL. 7.  1998. Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci 2122–27
  8. Zong Y, Jin R. 8.  2013. Structural mechanisms of the agrin-LRP4-MuSK signaling pathway in neuromuscular junction differentiation. Cell. Mol. Life Sci. 703077–88
  9. Zhang B, Luo S, Wang Q, Suzuki T, Xiong WC, Mei L. 9.  2008. LRP4 serves as a coreceptor of agrin. Neuron 60285–97
  10. Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM. 10.  et al. 2008. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135334–42
  11. Herz J.11.  2009. Apolipoprotein E receptors in the nervous system. Curr. Opin. Lipidol. 20190–96
  12. Gomez AM, Burden SJ. 12.  2011. The extracellular region of Lrp4 is sufficient to mediate neuromuscular synapse formation. Dev. Dyn. 2402626–33
  13. Zong Y, Zhang B, Gu S, Lee K, Zhou J. 13.  et al. 2012. Structural basis of agrin-LRP4-MuSK signaling. Genes Dev 26247–58
  14. Stetefeld J, Alexandrescu AT, Maciejewski MW, Jenny M, Rathgeb-Szabo K. 14.  et al. 2004. Modulation of agrin function by alternative splicing and Ca2+ binding. Structure 12503–15
  15. Wu H, Lu Y, Shen C, Patel N, Gan L. 15.  et al. 2012. Distinct roles of muscle and motoneuron LRP4 in neuromuscular junction formation. Neuron 7594–107
  16. Choi HY, Liu Y, Tennert C, Sugiura Y, Karakatsani A. 16.  et al. 2013. APP interacts with LRP4 and agrin to coordinate the development of the neuromuscular junction in mice. eLife 2e00220
  17. Zhang W, Coldefy AS, Hubbard SR, Burden SJ. 17.  2011. Agrin binds to the N-terminal region of Lrp4 protein and stimulates association between Lrp4 and the first immunoglobulin-like domain in muscle-specific kinase (MuSK). J. Biol. Chem. 28640624–30
  18. Okada K, Inoue A, Okada M, Murata Y, Kakuta S. 18.  et al. 2006. The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 3121802–5
  19. Inoue A, Setoguchi K, Matsubara Y, Okada K, Sato N. 19.  et al. 2009. Dok-7 activates the muscle receptor kinase MuSK and shapes synapse formation. Sci. Signal. 2ra7
  20. Arimura S, Okada T, Tezuka T, Chiyo T, Kasahara Y. 20.  et al. 2014. DOK7 gene therapy benefits mouse models of diseases characterized by defects in the neuromuscular junction. Science 3451505–8
  21. Tezuka T, Inoue A, Hoshi T, Weatherbee SD, Burgess RW. 21.  et al. 2014. The MuSK activator agrin has a separate role essential for postnatal maintenance of neuromuscular synapses. PNAS 11116556–61
  22. Till JH, Becerra M, Watty A, Lu Y, Ma Y. 22.  et al. 2002. Crystal structure of the MuSK tyrosine kinase: insights into receptor autoregulation. Structure 101187–96
  23. Bergamin E, Hallock PT, Burden SJ, Hubbard SR. 23.  2010. The cytoplasmic adaptor protein Dok7 activates the receptor tyrosine kinase MuSK via dimerization. Mol. Cell 39100–9
  24. Buyan A, Kalli AC, Sansom MS. 24.  2016. Multiscale simulations suggest a mechanism for the association of the Dok7 PH domain with PIP-containing membranes. PLOS Comput. Biol. 12e1005028
  25. Camurdanoglu BZ, Hrovat C, Dürnberger G, Madalinski M, Mechtler K, Herbst R. 25.  2016. MuSK kinase activity is modulated by a serine phosphorylation site in the kinase loop. Sci. Rep. 633583
  26. Zhou H, Glass DJ, Yancopoulos GD, Sanes JR. 26.  1999. Distinct domains of MuSK mediate its abilities to induce and to associate with postsynaptic specializations. J. Cell Biol. 1461133–46
  27. Linnoila J, Wang Y, Yao Y, Wang ZZ. 27.  2008. A mammalian homolog of Drosophila tumorous imaginal discs, Tid1, mediates agrin signaling at the neuromuscular junction. Neuron 60625–41
  28. Zhang B, Tzartos JS, Belimezi M, Ragheb S, Bealmear B. 28.  et al. 2012. Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch. Neurol. 69445–51
  29. Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. 29.  2001. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat. Med. 7365–68
  30. Hoshi T, Tezuka T, Yokoyama K, Iemura S, Natsume T, Yamanashi Y. 30.  2013. Mesdc2 plays a key role in cell-surface expression of Lrp4 and postsynaptic specialization in myotubes. FEBS Lett 5873749–54
  31. Hallock PT, Chin S, Blais S, Neubert TA, Glass DJ. 31.  2015. Sorbs1 and -2 interact with CrkL and are required for acetylcholine receptor cluster formation. Mol. Cell. Biol. 36262–70
  32. Hallock PT, Xu CF, Park TJ, Neubert TA, Curran T, Burden SJ. 32.  2010. Dok-7 regulates neuromuscular synapse formation by recruiting Crk and Crk-L. Genes Dev 242451–61
  33. Ueta R, Tezuka T, Izawa Y, Miyoshi S, Nagatoishi S. 33.  et al. 2017. The carboxyl-terminal region of Dok-7 plays a key, but not essential, role in activation of muscle-specific receptor kinase MuSK and neuromuscular synapse formation. J. Biochem. 161269–77
  34. Brenner HR, Akaaboune M. 34.  2014. Recycling of acetylcholine receptors at ectopic postsynaptic clusters induced by exogenous agrin in living rats. Dev. Biol. 394122–28
  35. Basu S, Sladecek S, Martinez-Peña y Valenzuela I, Akaaboune M, Smal I. 35.  et al. 2015. CLASP2-dependent microtubule capture at the neuromuscular junction membrane requires LL5β and actin for focal delivery of acetylcholine receptor vesicles. Mol. Biol. Cell 26938–51
  36. Basu S, Sladecek S, Pemble H, Wittmann T, Slotman JA. 36.  et al. 2014. Acetylcholine receptor (AChR) clustering is regulated both by glycogen synthase kinase 3β (GSK3β)-dependent phosphorylation and the level of CLIP-associated protein 2 (CLASP2) mediating the capture of microtubule plus-ends. J. Biol. Chem. 28930857–67
  37. Lee CW, Han J, Bamburg JR, Han L, Lynn R, Zheng JQ. 37.  2009. Regulation of acetylcholine receptor clustering by ADF/cofilin-directed vesicular trafficking. Nat. Neurosci. 12848–56
  38. Engel AG, Shen XM, Selcen D, Sine SM. 38.  2015. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14461
  39. Chen PJ, Martinez-Peña y Valenzuela I, Aittaleb M, Akaaboune M. 39.  2016. AChRs are essential for the targeting of rapsyn to the postsynaptic membrane of NMJs in living mice. J. Neurosci. 365680–85
  40. Mihailovska E, Raith M, Valencia RG, Fischer I, Al Banchaabouchi M. 40.  et al. 2014. Neuromuscular synapse integrity requires linkage of acetylcholine receptors to postsynaptic intermediate filament networks via rapsyn-plectin 1f complexes. Mol. Biol. Cell 254130–49
  41. Luo S, Zhang B, Dong XP, Tao Y, Ting A. 41.  et al. 2008. HSP90β regulates rapsyn turnover and subsequent AChR cluster formation and maintenance. Neuron 6097–110
  42. Bruneau EG, Akaaboune M. 42.  2010. Dynamics of the rapsyn scaffolding protein at the neuromuscular junction of live mice. J. Neurosci. 30614–19
  43. Vogt J, Harrison BJ, Spearman H, Cossins J, Vermeer S. 43.  et al. 2008. Mutation analysis of CHRNA1, CHRNB1, CHRND, and RAPSN genes in multiple pterygium syndrome/fetal akinesia patients. Am. J. Hum. Genet. 82222–27 [Google Scholar]
  44. Li L, Cao Y, Wu H, Ye X, Zhu Z. 44.  et al. 2016. Enzymatic activity of the scaffold protein rapsyn for synapse formation. Neuron 921007–19
  45. van der Veen AG, Ploegh HL. 45.  2012. Ubiquitin-like proteins. Annu. Rev. Biochem. 81323–57
  46. Amenta AR, Creely HE, Mercado ML, Hagiwara H, McKechnie BA. 46.  et al. 2012. Biglycan is an extracellular MuSK binding protein important for synapse stability. J. Neurosci. 322324–34
  47. Kummer TT, Misgeld T, Lichtman JW, Sanes JR. 47.  2004. Nerve-independent formation of a topologically complex postsynaptic apparatus. J. Cell Biol. 1641077–87
  48. Mazhar S, Herbst R. 48.  2012. The formation of complex acetylcholine receptor clusters requires MuSK kinase activity and structural information from the MuSK extracellular domain. Mol. Cell. Neurosci. 49475–86
  49. Proszynski TJ, Gingras J, Valdez G, Krzewski K, Sanes JR. 49.  2009. Podosomes are present in a postsynaptic apparatus and participate in its maturation. PNAS 10618373–78
  50. Proszynski TJ, Sanes JR. 50.  2013. Amotl2 interacts with LL5β, localizes to podosomes and regulates postsynaptic differentiation in muscle. J. Cell Sci. 1262225–35
  51. Gingras J, Gawor M, Bernadzki KM, Grady RM, Hallock P. 51.  et al. 2016. α-Dystrobrevin-1 recruits Grb2 and α-catulin to organize neurotransmitter receptors at the neuromuscular junction. J. Cell Sci. 129898–911
  52. Chen Y, Ip FC, Shi L, Zhang Z, Tang H. 52.  et al. 2014. Coronin 6 regulates acetylcholine receptor clustering through modulating receptor anchorage to actin cytoskeleton. J. Neurosci. 342413–21
  53. Härönen H, Zainul Z, Tu H, Naumenko N, Sormunen R. 53.  et al. 2017. Collagen XIII secures pre- and postsynaptic integrity of the neuromuscular synapse. Hum. Mol. Genet. 262076–90
  54. Tang H, Macpherson P, Argetsinger LS, Cieslak D, Suhr ST. 54.  et al. 2004. CaM kinase II-dependent phosphorylation of myogenin contributes to activity-dependent suppression of nAChR gene expression in developing rat myotubes. Cell. Signal. 16551–63
  55. Chen F, Liu Y, Sugiura Y, Allen PD, Gregg RG, Lin W. 55.  2011. Neuromuscular synaptic patterning requires the function of skeletal muscle dihydropyridine receptors. Nat. Neurosci. 14570–77
  56. Chen F, Qian L, Yang ZH, Huang Y, Ngo ST. 56.  et al. 2007. Rapsyn interaction with calpain stabilizes AChR clusters at the neuromuscular junction. Neuron 55247–60
  57. Yang J, Dominguez B, de Winter F, Gould TW, Eriksson JE, Lee KF. 57.  2011. Nestin negatively regulates postsynaptic differentiation of the neuromuscular synapse. Nat. Neurosci. 14324–30
  58. Mohseni P, Sung HK, Murphy AJ, Laliberte CL, Pallari HM. 58.  et al. 2011. Nestin is not essential for development of the CNS but required for dispersion of acetylcholine receptor clusters at the area of neuromuscular junctions. J. Neurosci. 3111547–52
  59. Shi L, Butt B, Ip FC, Dai Y, Jiang L. 59.  et al. 2010. Ephexin1 is required for structural maturation and neurotransmission at the neuromuscular junction. Neuron 65204–16
  60. Wang JY, Chen F, Fu XQ, Ding CS, Zhou L. 60.  et al. 2014. Caspase-3 cleavage of Dishevelled induces elimination of postsynaptic structures. Dev. Cell 28670–84
  61. Shen C, Lu Y, Zhang B, Figueiredo D, Bean J. 61.  et al. 2013. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J. Clin. Investig. 1235190–202
  62. Viegas S, Jacobson L, Waters P, Cossins J, Jacob S. 62.  et al. 2012. Passive and active immunization models of MuSK-Ab positive myasthenia: electrophysiological evidence for pre and postsynaptic defects. Exp. Neurol. 234506–12
  63. Luo ZG, Wang Q, Zhou JZ, Wang J, Luo Z. 63.  et al. 2002. Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 35489–505
  64. Jing L, Lefebvre JL, Gordon LR, Granato M. 64.  2009. Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor. Neuron 61721–33
  65. Jing L, Gordon LR, Shtibin E, Granato M. 65.  2010. Temporal and spatial requirements of unplugged/MuSK function during zebrafish neuromuscular development. PLOS ONE 5e8843
  66. Banerjee S, Gordon L, Donn TM, Berti C, Moens CB. 66.  et al. 2011. A novel role for MuSK and non-canonical Wnt signaling during segmental neural crest cell migration. Development 1383287–96
  67. Lain E, Carnejac S, Escher P, Wilson MC, Lomo T. 67.  et al. 2009. A novel role for embigin to promote sprouting of motor nerve terminals at the neuromuscular junction. J. Biol. Chem. 2848930–39
  68. Yumoto N, Kim N, Burden SJ. 68.  2012. Lrp4 is a retrograde signal for presynaptic differentiation at neuromuscular synapses. Nature 489438–42
  69. Li XM, Dong XP, Luo SW, Zhang B, Lee DH. 69.  et al. 2008. Retrograde regulation of motoneuron differentiation by muscle β-catenin. Nat. Neurosci. 11262–68
  70. Liu Y, Sugiura Y, Wu F, Mi W, Taketo MM. 70.  et al. 2012. β-Catenin stabilization in skeletal muscles, but not in motor neurons, leads to aberrant motor innervation of the muscle during neuromuscular development in mice. Dev. Biol. 366255–67
  71. Wu H, Lu Y, Barik A, Joseph A, Taketo MM. 71.  et al. 2012. β-Catenin gain of function in muscles impairs neuromuscular junction formation. Development 1392392–404
  72. Zhao K, Shen C, Lu Y, Huang Z, Li L. 72.  et al. 2017. Muscle Yap is a regulator of neuromuscular junction formation and regeneration. J. Neurosci. 373465–77
  73. Wu H, Barik A, Lu Y, Shen C, Bowman A. 73.  et al. 2015. Slit2 as a β-catenin/Ctnnb1-dependent retrograde signal for presynaptic differentiation. eLife 4e07266
  74. Jaworski A, Tessier-Lavigne M. 74.  2012. Autocrine/juxtaparacrine regulation of axon fasciculation by Slit-Robo signaling. Nat. Neurosci. 15367–69
  75. Chen J, Billings SE, Nishimune H. 75.  2011. Calcium channels link the muscle-derived synapse organizer laminin β2 to Bassoon and CAST/Erc2 to organize presynaptic active zones. J. Neurosci. 31512–25
  76. Chand KK, Lee KM, Schenning MP, Lavidis NA, Noakes PG. 76.  2014. Loss of β2-laminin alters calcium sensitivity and voltage-gated calcium channel maturation of neurotransmission at the neuromuscular junction. J. Physiol. 593245–65
  77. Paratcha G, Ledda F. 77.  2008. GDNF and GFRα: a versatile molecular complex for developing neurons. Trends Neurosci 31384–91
  78. Keller-Peck CR, Feng G, Sanes JR, Yan Q, Lichtman JW, Snider WD. 78.  2001. Glial cell line-derived neurotrophic factor administration in postnatal life results in motor unit enlargement and continuous synaptic remodeling at the neuromuscular junction. J. Neurosci. 216136–46
  79. Baudet C, Pozas E, Adameyko I, Andersson E, Ericson J, Ernfors P. 79.  2008. Retrograde signaling onto Ret during motor nerve terminal maturation. J. Neurosci. 28963–75
  80. Zahavi EE, Ionescu A, Gluska S, Gradus T, Ben-Yaakov K, Perlson E. 80.  2015. A compartmentalized microfluidic neuromuscular co-culture system reveals spatial aspects of GDNF functions. J. Cell Sci. 1281241–52
  81. Klevanski M, Saar M, Baumkötter F, Weyer SW, Kins S, Müller UC. 81.  2014. Differential role of APP and APLPs for neuromuscular synaptic morphology and function. Mol. Cell. Neurosci. 61201–10
  82. Stanga S, Zanou N, Audouard E, Tasiaux B, Contino S. 82.  et al. 2016. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation. FASEB J 301696–711
  83. Henriquez JP, Webb A, Bence M, Bildsoe H, Sahores M. 83.  et al. 2008. Wnt signaling promotes AChR aggregation at the neuromuscular synapse in collaboration with agrin. PNAS 10518812–17
  84. Messeant J, Ezan J, Delers P, Glebov K, Marchiol C. 84.  et al. 2017. Wnt proteins contribute to neuromuscular junction formation through distinct signaling pathways. Development 1441712–24
  85. Zhang B, Liang C, Bates R, Yin Y, Xiong WC, Mei L. 85.  2012. Wnt proteins regulate acetylcholine receptor clustering in muscle cells. Mol. Brain 57
  86. Strochlic L, Falk J, Goillot E, Sigoillot S, Bourgeois F. 86.  et al. 2012. Wnt4 participates in the formation of vertebrate neuromuscular junction. PLOS ONE 7e29976
  87. Wang J, Luo ZG. 87.  2008. The role of Wnt/β-catenin signaling in postsynaptic differentiation. Comm. Integr. Biol. 1158–60
  88. Remedio L, Gribble KD, Lee JK, Kim N, Hallock PT. 88.  et al. 2016. Diverging roles for Lrp4 and Wnt signaling in neuromuscular synapse development during evolution. Genes Dev 301058–69
  89. Sienknecht UJ, Fekete DM. 89.  2008. Comprehensive Wnt-related gene expression during cochlear duct development in chicken. J. Comp. Neurol. 510378–95
  90. Gordon LR, Gribble KD, Syrett CM, Granato M. 90.  2012. Initiation of synapse formation by Wnt-induced MuSK endocytosis. Development 1391023–33
  91. Zhang J, Granato M. 91.  2000. The zebrafish unplugged gene controls motor axon pathway selection. Development 1272099–111
  92. Messeant J, Dobbertin A, Girard E, Delers P, Manuel M. 92.  et al. 2015. MuSK Frizzled-like domain is critical for mammalian neuromuscular junction formation and maintenance. J. Neurosci. 354926–41
  93. Zhu D, Yang Z, Luo Z, Luo S, Xiong WC, Mei L. 93.  2008. Muscle-specific receptor tyrosine kinase endocytosis in acetylcholine receptor clustering in response to agrin. J. Neurosci. 281688–96
  94. Wang J, Jing Z, Zhang L, Zhou G, Braun J. 94.  et al. 2003. Regulation of acetylcholine receptor clustering by the tumor suppressor APC. Nat. Neurosci. 61017–18
  95. Zhang B, Luo S, Dong XP, Zhang X, Liu C. 95.  et al. 2007. β-catenin regulates acetylcholine receptor clustering in muscle cells through interaction with rapsyn. J. Neurosci. 273968–73
  96. Cheusova T, Khan MA, Schubert SW, Gavin AC, Buchou T. 96.  et al. 2006. Casein kinase 2-dependent serine phosphorylation of MuSK regulates acetylcholine receptor aggregation at the neuromuscular junction. Genes Dev 201800–16
  97. Barik A, Zhang B, Sohal GS, Xiong WC, Mei L. 97.  2014. Crosstalk between Agrin and Wnt signaling pathways in development of vertebrate neuromuscular junction. Dev. Neurobiol. 74828–38
  98. Shen C, Xiong WC, Mei L. 98.  2015. LRP4 in neuromuscular junction and bone development and diseases. Bone 80101–8
  99. Lichtman JW, Colman H. 99.  2000. Synapse elimination and indelible memory. Neuron 25269–78
  100. Fox MA, Tapia JC, Kasthuri N, Lichtman JW. 100.  2011. Delayed synapse elimination in mouse levator palpebrae superioris muscle. J. Comp. Neurol. 5192907–21
  101. Favero M, Busetto G, Cangiano A. 101.  2012. Spike timing plays a key role in synapse elimination at the neuromuscular junction. PNAS 109E1667–75
  102. Balice-Gordon RJ, Lichtman JW. 102.  1994. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372519–24
  103. Bishop DL, Misgeld T, Walsh MK, Gan WB, Lichtman JW. 103.  2004. Axon branch removal at developing synapses by axosome shedding. Neuron 44651–61
  104. Turney SG, Lichtman JW. 104.  2012. Reversing the outcome of synapse elimination at developing neuromuscular junctions in vivo: evidence for synaptic competition and its mechanism. PLOS Biol 10e1001352
  105. Darabid H, Arbour D, Robitaille R. 105.  2013. Glial cells decipher synaptic competition at the mammalian neuromuscular junction. J. Neurosci. 331297–313
  106. Smith IW, Mikesh M, Lee Y, Thompson WJ. 106.  2013. Terminal Schwann cells participate in the competition underlying neuromuscular synapse elimination. J. Neurosci. 3317724–36
  107. Lee YI, Li Y, Mikesh M, Smith I, Nave KA. 107.  et al. 2016. Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions. PNAS 113E479–87
  108. Roche SL, Sherman DL, Dissanayake K, Soucy G, Desmazieres A. 108.  et al. 2014. Loss of glial neurofascin155 delays developmental synapse elimination at the neuromuscular junction. J. Neurosci. 3412904–18
  109. Brill MS, Kleele T, Ruschkies L, Wang M, Marahori NA. 109.  et al. 2016. Branch-specific microtubule destabilization mediates axon branch loss during neuromuscular synapse elimination. Neuron 92845–56
  110. Tetruashvily MM, McDonald MA, Boulanger LM. 110.  2016. MHCI promotes developmental synapse elimination and aging-related synapse loss at the vertebrate neuromuscular junction. Brain Behav. Immun. 56197–208
  111. Yang F, Je HS, Ji Y, Nagappan G, Hempstead B, Lu B. 111.  2009. Pro-BDNF-induced synaptic depression and retraction at developing neuromuscular synapses. J. Cell Biol. 185727–41
  112. Couesnon A, Offner N, Bernard V, Chaverot N, Backer S. 112.  et al. 2013. CLIPR-59: a protein essential for neuromuscular junction stability during mouse late embryonic development. Development 1401583–93
  113. Samuel MA, Valdez G, Tapia JC, Lichtman JW, Sanes JR. 113.  2012. Agrin and synaptic laminin are required to maintain adult neuromuscular junctions. PLOS ONE 7e46663
  114. Martinez-Peña y Valenzuela I, Mouslim C, Pires-Oliveira M, Adams ME, Froehner SC, Akaaboune M. 114.  2011. Nicotinic acetylcholine receptor stability at the NMJ deficient in α-syntrophin in vivo. . J. Neurosci. 3115586–96 [Google Scholar]
  115. Aittaleb M, Martinez-Peña y Valenzuela I, Akaaboune M. 115.  2017. Spatial distribution and molecular dynamics of dystrophin glycoprotein components at the neuromuscular junction in vivo. . J. Cell Sci. 1301752–59 [Google Scholar]
  116. Mouslim C, Aittaleb M, Hume RI, Akaaboune M. 116.  2012. A role for the calmodulin kinase II-related anchoring protein (αkap) in maintaining the stability of nicotinic acetylcholine receptors. J. Neurosci. 325177–85
  117. Martinez-Peña y Valenzuela I, Pires-Oliveira M, Akaaboune M. 117.  2013. PKC and PKA regulate AChR dynamics at the neuromuscular junction of living mice. PLOS ONE 8e81311
  118. Choi K-R, Berrera M, Reischl M, Strack S, Albrizio M. 118.  et al. 2012. Rapsyn mediates subsynaptic anchoring of PKA type I and stabilisation of acetylcholine receptor in vivo. J. Cell Sci. 125714–23
  119. Barik A, Lu Y, Sathyamurthy A, Bowman A, Shen C. 119.  et al. 2014. LRP4 is critical for neuromuscular junction maintenance. J. Neurosci. 3413892–905
  120. Eguchi T, Tezuka T, Miyoshi S, Yamanashi Y. 120.  2016. Postnatal knockdown of dok-7 gene expression in mice causes structural defects in neuromuscular synapses and myasthenic pathology. Genes Cells 21670–76
  121. Kong XC, Barzaghi P, Ruegg MA. 121.  2004. Inhibition of synapse assembly in mammalian muscle in vivo by RNA interference. EMBO Rep 5183–88
  122. Hesser BA, Henschel O, Witzemann V. 122.  2006. Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK. Mol. Cell. Neurosci. 31470–80
  123. Schmidt N, Akaaboune M, Gajendran N, Martinez-Peña y Valenzuela I, Wakefield S. 123.  et al. 2011. Neuregulin/ErbB regulate neuromuscular junction development by phosphorylation of α-dystrobrevin. J. Cell Biol. 1951171–84
  124. Khan MM, Lustrino D, Silveira WA, Wild F, Straka T. 124.  et al. 2016. Sympathetic innervation controls homeostasis of neuromuscular junctions in health and disease. PNAS 113746–50
  125. Wright MC, Potluri S, Wang X, Dentcheva E, Gautam D. 125.  et al. 2009. Distinct muscarinic acetylcholine receptor subtypes contribute to stability and growth, but not compensatory plasticity, of neuromuscular synapses. J. Neurosci. 2914942–55
  126. Sugiura Y, Lin W. 126.  2011. Neuron-glia interactions: the roles of Schwann cells in neuromuscular synapse formation and function. Biosci. Rep. 31295–302
  127. Barik A, Li L, Sathyamurthy A, Xiong WC, Mei L. 127.  2016. Schwann cells in neuromuscular junction formation and maintenance. J. Neurosci. 369770–81
  128. Kang H, Tian L, Mikesh M, Lichtman JW, Thompson WJ. 128.  2014. Terminal Schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury. J. Neurosci. 346323–33
  129. Nguyen QT, Sanes JR, Lichtman JW. 129.  2002. Pre-existing pathways promote precise projection patterns. Nat. Neurosci. 5861–67
  130. Son YJ, Thompson WJ. 130.  1995. Nerve sprouting in muscle is induced and guided by processes extended by Schwann cells. Neuron 14133–41
  131. Ko CP, Thompson W. 131.  2003. Preface to the special issue. J. Neurocytol. 32423
  132. Marques MJ, Pereira ECL, Minatel E, Neto HS. 132.  2006. Nerve-terminal and Schwann-cell response after nerve injury in the absence of nitric oxide. Muscle Nerve 34225–31
  133. Rosenberg AF, Isaacman-Beck J, Franzini-Armstrong C, Granato M. 133.  2014. Schwann cells and deleted in colorectal carcinoma direct regenerating motor axons towards their original path. J. Neurosci. 3414668–81
  134. Isaacman-Beck J, Schneider V, Franzini-Armstrong C, Granato M. 134.  2015. The lh3 glycosyltransferase directs target-selective peripheral nerve regeneration. Neuron 88691–703
  135. Peng HB, Yang JF, Dai Z, Lee CW, Hung HW. 135.  et al. 2003. Differential effects of neurotrophins and Schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J. Neurosci. 235050–60
  136. Ullian EM, Harris BT, Wu A, Chan JR, Barres BA. 136.  2004. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture. Mol. Cell. Neurosci. 25241–51
  137. Fontana X, Hristova M, Da Costa C, Patodia S, Thei L. 137.  et al. 2012. c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling. J. Cell Biol. 198127–41
  138. Xu P, Rosen KM, Hedstrom K, Rey O, Guha S. 138.  et al. 2013. Nerve injury induces glial cell line-derived neurotrophic factor (GDNF) expression in Schwann cells through purinergic signaling and the PKC-PKD pathway. Glia 611029–40
  139. Vincent A.139.  2002. Unravelling the pathogenesis of myasthenia gravis. Nat. Rev. Immunol. 2797–804
  140. Phillips WD, Vincent A. 140.  2016. Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms. F1000Res 51513
  141. Higuchi O, Hamuro J, Motomura M, Yamanashi Y. 141.  2011. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann. Neurol. 69418–22
  142. Pevzner A, Schoser B, Peters K, Cosma NC, Karakatsani A. 142.  et al. 2012. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J. Neurol. 259427–35
  143. Gasperi C, Melms A, Schoser B, Zhang Y, Meltoranta J. 143.  et al. 2014. Anti-agrin autoantibodies in myasthenia gravis. Neurology 821976–83
  144. Zhang B, Shen C, Bealmear B, Ragheb S, Xiong WC. 144.  et al. 2014. Autoantibodies to agrin in myasthenia gravis patients. PLOS ONE 9e91816
  145. Sanders DB, El-Salem K, Massey JM, McConville J, Vincent A. 145.  2003. Clinical aspects of MuSK antibody positive seronegative MG. Neurology 601978–80
  146. Engel AG, Shen XM, Selcen D, Sine SM. 146.  2015. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14420–34
  147. Berger MJ, Doherty TJ. 147.  2010. Sarcopenia: prevalence, mechanisms, and functional consequences. Interdiscip. Top. Gerontol. 3794–114
  148. Valdez G, Tapia JC, Kang H, Clemenson GD Jr., Gage FH. 148.  et al. 2010. Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. PNAS 10714863–68
  149. Chai RJ, Vukovic J, Dunlop S, Grounds MD, Shavlakadze T. 149.  2011. Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLOS ONE 6e28090
  150. Li Y, Lee Y, Thompson WJ. 150.  2011. Changes in aging mouse neuromuscular junctions are explained by degeneration and regeneration of muscle fiber segments at the synapse. J. Neurosci. 3114910–19
  151. Li Y, Thompson WJ. 151.  2011. Nerve terminal growth remodels neuromuscular synapses in mice following regeneration of the postsynaptic muscle fiber. J. Neurosci. 3113191–203
  152. Willadt S, Nash M, Slater CR. 152.  2016. Age-related fragmentation of the motor endplate is not associated with impaired neuromuscular transmission in the mouse diaphragm. Sci. Rep. 624849
  153. Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM. 153.  et al. 2014. Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 81509–21
  154. Butikofer L, Zurlinden A, Bolliger MF, Kunz B, Sonderegger P. 154.  2011. Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia. FASEB J 254378–93
  155. Valdez G, Tapia JC, Lichtman JW, Fox MA, Sanes JR. 155.  2012. Shared resistance to aging and ALS in neuromuscular junctions of specific muscles. PLOS ONE 7e34640
  156. Williams AH, Valdez G, Moresi V, Qi X, McAnally J. 156.  et al. 2009. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 3261549–54
  157. Murray LM, Lee S, Baumer D, Parson SH, Talbot K, Gillingwater TH. 157.  2010. Pre-symptomatic development of lower motor neuron connectivity in a mouse model of severe spinal muscular atrophy. Hum. Mol. Genet. 19420–33
  158. Lee YI, Mikesh M, Smith I, Rimer M, Thompson W. 158.  2011. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Dev. Biol. 356432–44
  159. Hettwer S, Lin S, Kucsera S, Haubitz M, Oliveri F. 159.  et al. 2014. Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction. PLOS ONE 9e88739
  160. Perez-Garcia MJ, Burden SJ. 160.  2012. Increasing MuSK activity delays denervation and improves motor function in ALS mice. Cell Rep 2497–502
  161. Kim JK, Caine C, Awano T, Herbst R, Monani UR. 161.  2017. Motor neuronal repletion of the NMJ organizer, Agrin, modulates the severity of the spinal muscular atrophy disease phenotype in model mice. Hum. Mol. Genet. 262377–85
  162. Ghazanfari N, Linsao EL, Trajanovska S, Morsch M, Gregorevic P. 162.  et al. 2015. Forced expression of muscle specific kinase slows postsynaptic acetylcholine receptor loss in a mouse model of MuSK myasthenia gravis. Physiol. Rep. 3e12658
  163. Dürnberger G, Camurdanoglu BZ, Tomschik M, Schutzbier M, Roitinger E. 163.  et al. 2014. Global analysis of muscle-specific kinase signaling by quantitative phosphoproteomics. Mol. Cell. Proteom. 131993–2003
  164. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ. 164.  2001. The architecture of active zone material at the frog's neuromuscular junction. Nature 409479–84
  165. Yilmaz A, Kattamuri C, Ozdeslik RN, Schmiedel C, Mentzer S. 165.  2016. MuSK is a BMP co-receptor that shapes BMP responses and calcium signaling in muscle cells. Sci. Signal. 9ra87
  166. York AL, Zheng JQ. 166.  2017. Super-resolution microscopy reveals a nanoscale organization of acetylcholine receptors for trans-synaptic alignment at neuromuscular synapses. eNeuro 4e0232–17
  167. Polo-Parada L, Bose CM, Landmesser LT. 164.  2001. Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron 32815–28
/content/journals/10.1146/annurev-physiol-022516-034255
Loading
/content/journals/10.1146/annurev-physiol-022516-034255
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error