1932

Abstract

Most land plants engage in mutually beneficial interactions with arbuscular mycorrhizal (AM) fungi, the fungus providing phosphate and nitrogen in exchange for fixed carbon. During presymbiosis, both organisms communicate via oligosaccharides and butenolides. The requirement for a rice chitin receptor in symbiosis-induced lateral root development suggests that cell division programs operate in inner root tissues during both AM and nodule symbioses. Furthermore, the identification of transcription factors underpinning arbuscule development and degeneration reemphasized the plant's regulatory dominance in AM symbiosis. Finally, the finding that AM fungi, as lipid auxotrophs, depend on plant fatty acids (FAs) to complete their asexual life cycle revealed the basis for fungal biotrophy. Intriguingly, lipid metabolism is also central for asexual reproduction and interaction of the fungal sister clade, the Mucoromycotina, with endobacteria, indicative of an evolutionarily ancient role for lipids in fungal mutualism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-080516-035521
2018-08-25
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/phyto/56/1/annurev-phyto-080516-035521.html?itemId=/content/journals/10.1146/annurev-phyto-080516-035521&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Akiyama K, Matsuzaki K, Hayashi H 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–27
    [Google Scholar]
  2. 2.  Alexander T, Meier R, Toth R, Weber HC 1988. Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays L. New Phytol 110:363–70
    [Google Scholar]
  3. 3.  Amor BB, Shaw SL, Oldroyd GE, Maillet F, Penmetsa RV et al. 2003. The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J 34:495–506
    [Google Scholar]
  4. 4.  Antolin-Llovera M, Ried MK, Parniske M 2014. Cleavage of the SYMBIOSIS RECEPTOR-LIKE KINASE ectodomain promotes complex formation with Nod factor receptor 5. Curr. Biol. 24:422–27
    [Google Scholar]
  5. 5.  Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC et al. 2006. The Medicago truncatula lysin motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol 142:265–79
    [Google Scholar]
  6. 6.  Balestrini R, Berta G, Bonfante P 1992. The plant nucleus in mycorrhizal roots: positional and structural modifications. Biol. Cell 75:235–43
    [Google Scholar]
  7. 7.  Banba M, Gutjahr C, Miyao A, Hirochika H, Paszkowski U et al. 2008. Divergence of evolutionary ways among common sym genes: CASTOR and CCaMK show functional conservation between two symbiosis systems and constitute the root of a common signaling pathway. Plant Cell Physiol 49:1659–71
    [Google Scholar]
  8. 8.  Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A et al. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLOS Biol 4:e226
    [Google Scholar]
  9. 9.  Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG 2011. The dawn of symbiosis between plants and fungi. Biol. Lett. 7:574–77
    [Google Scholar]
  10. 10.  Blilou I, Ocampo JA, Garcia-Garrido JM 2000. Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J. Exp. . Bot 51:1969–77
    [Google Scholar]
  11. 11.  Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–30
    [Google Scholar]
  12. 12.  Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M et al. 2017. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. PNAS 114:E8118–27
    [Google Scholar]
  13. 13.  Bravo A, Brands M, Wewer V, Dormann P, Harrison MJ 2017. Arbuscular mycorrhiza–specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol 214:1631–45
    [Google Scholar]
  14. 14.  Bravo A, York T, Pumplin N, Mueller LA, Harrison MJ 2016. Genes conserved for arbuscular mycorrhizal symbiosis identified through phylogenomics. Nat. Plants 2:15208
    [Google Scholar]
  15. 15.  Breuillin-Sessoms F, Floss DS, Gomez SK, Pumplin N, Ding Y et al. 2015. Suppression of arbuscule degeneration in Medicago truncatula phosphate transporter4 mutants is dependent on the ammonium transporter 2 family protein AMT2;3. Plant Cell 27:1352–66
    [Google Scholar]
  16. 16.  Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT et al. 2012. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. PNAS 109:13859–64
    [Google Scholar]
  17. 17.  Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G 2000. The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol. Plant-Microbe Interact. 13:693–98
    [Google Scholar]
  18. 18.  Buendia L, Wang T, Girardin A, Lefebvre B 2016. The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. New Phytol 210:184–95
    [Google Scholar]
  19. 19.  Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP et al. 2014. The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3:03766
    [Google Scholar]
  20. 20.  Capoen W, Sun J, Wysham D, Otegui M, Venkateshwaren M et al. 2011. Nuclear membranes control symbiotic calcium signaling of legumes. PNAS 108:14348–53
    [Google Scholar]
  21. 21.  Carotenuto G, Chabaud M, Miyata K, Capozzi M, Takeda N et al. 2017. The rice LysM receptor-like kinase OsCERK1 is required for the perception of short-chain chitin oligomers in arbuscular mycorrhizal signaling. New Phytol 214:1440–46
    [Google Scholar]
  22. 22.  Charpentier M, Bredemeier R, Wanner G, Takeda N, Schleiff E, Parniske M 2008. Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell 20:3467–79
    [Google Scholar]
  23. 23.  Charpentier M, Sun J, Vaz Martins T, Radhakrishnan GV, Findlay K et al. 2016. Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352:1102–5
    [Google Scholar]
  24. 24.  Chiu CH, Choi J, Paszkowski U 2018. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice. New Phytol 217:552–57
    [Google Scholar]
  25. 25.  Conn CE, Nelson DC 2015. Evidence that KARRIKIN-INSENSITIVE2 (KAI2) receptors may perceive an unknown signal that is not karrikin or strigolactone. Front. Plant Sci. 6:1219
    [Google Scholar]
  26. 27.  Delaux PM, Becard G, Combier JP 2013. NSP1 is a component of the Myc signaling pathway. New Phytol 199:59–65
    [Google Scholar]
  27. 28.  Delaux PM, Radhakrishnan GV, Jayaraman D, Cheema J, Malbreil M et al. 2015. Algal ancestor of land plants was preadapted for symbiosis. PNAS 112:13390–95
    [Google Scholar]
  28. 29.  Delaux PM, Varala K, Edger PP, Coruzzi GM, Pires JC, Ane JM 2014. Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution. PLOS Genet 10:e1004487
    [Google Scholar]
  29. 30.  Den Herder G, Yoshida S, Antolin-Llovera M, Ried MK, Parniske M 2012. Lotus japonicus E3 ligase SEVEN IN ABSENTIA4 destabilizes the symbiosis receptor-like kinase SYMRK and negatively regulates rhizobial infection. Plant Cell 24:1691–707
    [Google Scholar]
  30. 31.  Desaki Y, Kouzai Y, Ninomiya Y, Iwase R, Shimizu Y et al. 2018. OsCERK1 plays a crucial role in the lipopolysaccharide-induced immune response of rice. New Phytol 217:1042–49
    [Google Scholar]
  31. 32.  Devers EA, Teply J, Reinert A, Gaude N, Krajinski F 2013. An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula. . BMC Plant Biol 13:82
    [Google Scholar]
  32. 26.  de Vrieze J 2015. The littlest farmhands. Science 349:680–83
    [Google Scholar]
  33. 33.  Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló P, Kiss GB 2002. A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–66
    [Google Scholar]
  34. 34.  Favre P, Bapaume L, Bossolini E, Delorenzi M, Falquet L, Reinhardt D 2014. A novel bioinformatics pipeline to discover genes related to arbuscular mycorrhizal symbiosis based on their evolutionary conservation pattern among higher plants. BMC Plant Biol 14:333
    [Google Scholar]
  35. 35.  Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ et al. 2015. First evidence of mutualism between ancient plant lineages (Haplomitriopsida liverworts) and Mucoromycotina fungi and its response to simulated Palaeozoic changes in atmospheric CO2. New Phytol 205:743–56
    [Google Scholar]
  36. 36.  Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD 2004. A compound from smoke that promotes seed germination. Science 305:977
    [Google Scholar]
  37. 37.  Flematti GR, Waters MT, Scaffidi A, Merritt DJ, Ghisalberti EL et al. 2013. Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds. Mol. Plant 6:29–37
    [Google Scholar]
  38. 38.  Floss DS, Gomez SK, Park HJ, MacLean AM, Muller LM et al. 2017. A transcriptional program for arbuscule degeneration during AM symbiosis is regulated by MYB1. Curr. Biol. 27:1206–12
    [Google Scholar]
  39. 39.  Floss DS, Levy JG, Levesque-Tremblay V, Pumplin N, Harrison MJ 2013. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. PNAS 110:E5025–34
    [Google Scholar]
  40. 40.  Foo E, Ross JJ, Jones WT, Reid JB 2013. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann. Bot. 111:769–79
    [Google Scholar]
  41. 41.  Fournier J, Timmers ACJ, Sieberer BJ, Jauneau A, Chabaud M, Barker DG 2008. Mechanism of infection thread elongation in root hairs of Medicago truncatula and dynamic interplay with associated rhizobial colonization. Plant Physiol 148:1985–95
    [Google Scholar]
  42. 42.  Gaude N, Bortfeld S, Duensing N, Lohse M, Krajinski F 2012. Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–28
    [Google Scholar]
  43. 43.  Genre A, Chabaud M, Balzergue C, Puech-Pages V, Novero M et al. 2013. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202
    [Google Scholar]
  44. 44.  Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P 2008. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. . Plant Cell 20:1407–20
    [Google Scholar]
  45. 45.  Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG 2005. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–99
    [Google Scholar]
  46. 46.  Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P 2009. Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiol 149:1424–34
    [Google Scholar]
  47. 47.  Gobbato E, Marsh JF, Vernie T, Wang E, Maillet F et al. 2012. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr. Biol. 22:2236–41
    [Google Scholar]
  48. 48.  Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y et al. 2009. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10
    [Google Scholar]
  49. 49.  Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189–94
    [Google Scholar]
  50. 50.  Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD et al. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–23
    [Google Scholar]
  51. 51.  Groth M, Kosuta S, Gutjahr C, Haage K, Hardel SL et al. 2013. Two Lotus japonicus symbiosis mutants impaired at distinct steps of arbuscule development. Plant J 75:117–29
    [Google Scholar]
  52. 52.  Groth M, Takeda N, Perry J, Uchida H, Draxl S et al. 2010. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22:2509–26
    [Google Scholar]
  53. 53.  Guo F, Li Z, Xu X, Wang K, Shao M et al. 2016. Butenolide derivatives from the plant endophytic fungus Aspergillus terreus. . Fitoterapia 113:44–50
    [Google Scholar]
  54. 54.  Gutjahr C, Banba M, Croset V, An K, Miyao A et al. 2008. Arbuscular mycorrhiza–specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20:2989–3005
    [Google Scholar]
  55. 55.  Gutjahr C, Casieri L, Paszkowski U 2009. Glomus intraradices induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytol 182:829–37
    [Google Scholar]
  56. 56.  Gutjahr C, Gobbato E, Choi J, Riemann M, Johnston MG et al. 2015. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350:1521–24
    [Google Scholar]
  57. 57.  Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H et al. 2012. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J 69:906–20
    [Google Scholar]
  58. 58.  Harrison MJ, Dewbre GR, Liu J 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413
    [Google Scholar]
  59. 59.  Harrison MJ, van Buuren ML 1995. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. . Nature 378:626–29
    [Google Scholar]
  60. 60.  Hayashi T, Shimoda Y, Sato S, Tabata S, Imaizumi-Anraku H, Hayashi M 2014. Rhizobial infection does not require cortical expression of upstream common symbiosis genes responsible for the induction of Ca2+ spiking. Plant J 77:146–59
    [Google Scholar]
  61. 61.  Heck C, Kuhn H, Heidt S, Walter S, Rieger N, Requena N 2016. Symbiotic fungi control plant root cortex development through the novel GRAS transcription factor MIG1. Curr. Biol. 26:2770–78
    [Google Scholar]
  62. 62.  Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N 2011. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23:3812
    [Google Scholar]
  63. 63.  Horvath B, Yeun LH, Domonkos A, Halasz G, Gobbato E et al. 2011. Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol. Plant-Microbe Interact. 24:1345–58
    [Google Scholar]
  64. 64.  Huisman R, Hontelez J, Mysore KS, Wen J, Bisseling T, Limpens E 2016. A symbiosis-dedicated SYNTAXIN OF PLANTS 13II isoform controls the formation of a stable host-microbe interface in symbiosis. New Phytol 211:1338–51
    [Google Scholar]
  65. 65.  Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Miwa H et al. 2005. Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–31
    [Google Scholar]
  66. 66.  Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I et al. 2005. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86
    [Google Scholar]
  67. 67.  Ivanov S, Fedorova EE, Limpens E, De Mita S Genre A et al. 2012. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. PNAS 109:8316–21
    [Google Scholar]
  68. 68.  Jakobsen I, Rosendahl L 1990. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83
    [Google Scholar]
  69. 69.  Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ 2007. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. PNAS 104:1720–25
    [Google Scholar]
  70. 70.  Jiang Y, Wang W, Xie Q, Liu N, Liu L et al. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–75
    [Google Scholar]
  71. 71.  Jones JDG, Dangl JL 2006. The plant immune system. Nature 444:323–29
    [Google Scholar]
  72. 72.  Kamel L, Keller-Pearson M, Roux C, Ane JM 2017. Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics. New Phytol 213:531–36
    [Google Scholar]
  73. 73.  Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EM et al. 2006. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. PNAS 103:359–64
    [Google Scholar]
  74. 74.  Kevei Z, Lougnon G, Mergaert P, Horvath GV, Kereszt A et al. 2007. 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 interacts with NORK and is crucial for nodulation in Medicago truncatula. . Plant Cell 19:3974–89
    [Google Scholar]
  75. 75.  Keymer A, Pimprikar P, Wewer V, Huber C, Brands M et al. 2017. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 6:e29107
    [Google Scholar]
  76. 76.  Kim HI, Kisugi T, Khetkam P, Xie X, Yoneyama K et al. 2014. Avenaol, a germination stimulant for root parasitic plants from Avena strigosa. . Phytochemistry 103:85–88
    [Google Scholar]
  77. 77.  Kistner C, Parniske M 2002. Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7:511–18
    [Google Scholar]
  78. 78.  Kobae Y, Gutjahr C, Paszkowski U, Kojima T, Fujiwara T, Hata S 2014. Lipid droplets of arbuscular mycorrhizal fungi emerge in concert with arbuscule collapse. Plant Cell Physiol 55:1945–53
    [Google Scholar]
  79. 79.  Kobae Y, Hata S 2010. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant Cell Physiol 51:341–53
    [Google Scholar]
  80. 80.  Kobae Y, Kameoka H, Sugimura Y, Saito K, Ohtomo R, Fujiwara T, Kyozuka J 2018. Strigolactone biosynthesis genes of rice are required for the punctual entry of arbuscular mycorrhizal fungi into the roots. Plant Cell Physiol 59:544–53
    [Google Scholar]
  81. 81.  Konopka JB 2012. N-acetylglucosamine (GlcNAc) functions in cell signaling. Scientifica 2012:pii:489208
    [Google Scholar]
  82. 82.  Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ et al. 2008. Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. PNAS 105:9823–28
    [Google Scholar]
  83. 83.  Kosuta S, Held M, Hossain MS, Morieri G, Macgillivary A et al. 2011. Lotus japonicus symRK-14 uncouples the cortical and epidermal symbiotic program. Plant J 67:929–40
    [Google Scholar]
  84. 84.  Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M et al. 2012. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–44
    [Google Scholar]
  85. 85.  Lastovetsky OA, Gaspar ML, Mondo SJ, LaButti KM, Sandor L et al. 2016. Lipid metabolic changes in an early divergent fungus govern the establishment of a mutualistic symbiosis with endobacteria. PNAS 113:15102–7
    [Google Scholar]
  86. 86.  Lefebvre B, Timmers T, Mbengue M, Moreau S, Herve C et al. 2010. A remorin protein interacts with symbiotic receptors and regulates bacterial infection. PNAS 107:2343–48
    [Google Scholar]
  87. 87.  Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O et al. 2004. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–64
    [Google Scholar]
  88. 88.  Li W, Nguyen KH, Chu HD, Ha CV, Watanabe Y et al. 2017. The karrikin receptor KAI2 promotes drought resistance in Arabidopsis thaliana. . PLOS Genet 13:e1007076
    [Google Scholar]
  89. 89.  Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R 2003. LysM domain receptor kinases regulating rhizobial Nod factor–induced infection. Science 302:630–33
    [Google Scholar]
  90. 90.  Limpens E, van Zeijl A, Geurts R 2015. Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. Annu. Rev. Phytopathol. 53:311–34
    [Google Scholar]
  91. 91.  Liu J, Deng J, Zhu F, Li Y, Lu Z et al. 2018. The MtDIM2-MtPUB2 negative feedback loop plays a role in nodulation homeostasis. Plant Physiol 176:3003–26
    [Google Scholar]
  92. 92.  Liu S, Wang J, Han Z, Gong X, Zhang H, Chai J 2016. Molecular mechanism for fungal cell wall recognition by rice chitin receptor OsCEBiP. Structure 24:1192–200
    [Google Scholar]
  93. 93.  Liu T, Liu Z, Song C, Hu Y, Han Z et al. 2012. Chitin-induced dimerization activates a plant immune receptor. Science 336:1160–64
    [Google Scholar]
  94. 94.  Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S et al. 2011. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–65
    [Google Scholar]
  95. 95.  Lohmann GV, Shimoda Y, Nielsen MW, Jorgensen FG, Grossmann C et al. 2010. Evolution and regulation of the Lotus japonicus LysM receptor gene family. Mol. Plant-Microbe Interact. 23:510–21
    [Google Scholar]
  96. 96.  Lota F, Wegmuller S, Buer B, Sato S, Brautigam A et al. 2013. The cis-acting CTTC-P1BS module is indicative for gene function of LjVTI12, a Qb-SNARE protein gene that is required for arbuscule formation in Lotus japonicus. . Plant J 74:280–93
    [Google Scholar]
  97. 97.  Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV et al. 2017. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–78
    [Google Scholar]
  98. 98.  Luginbuehl LH, Oldroyd GED 2017. Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Curr. Biol. 27:R952–63
    [Google Scholar]
  99. 99.  MacLean AM, Bravo A, Harrison MJ 2017. Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. Plant Cell 29:2319–35
    [Google Scholar]
  100. 100.  Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M et al. 2003. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–40
    [Google Scholar]
  101. 101.  Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A et al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63
    [Google Scholar]
  102. 102.  Marleau J, Dalpe Y, St-Arnaud M, Hijri M 2011. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi. BMC Evol. Biol. 11:51
    [Google Scholar]
  103. 103.  Matthys C, Walton A, Struk S, Stes E, Boyer F-D et al. 2016. The whats, the wheres and the hows of strigolactone action in the roots. Planta 243:1327–37
    [Google Scholar]
  104. 104.  Messinese E, Mun JH, Yeun LH, Jayaraman D, Rouge P et al. 2007. A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol. . Plant-Microbe Interact 20:912–21
    [Google Scholar]
  105. 105.  Mitra RM, Gleason CA, Edwards A, Hadfield J, Downie JA et al. 2004. A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: gene identification by transcript-based cloning. PNAS 101:4701–5
    [Google Scholar]
  106. 106.  Miya A, Albert P, Shinya T, Desaki Y, Ichimura K et al. 2007. CERK1, a LysM receptor, is essential for chitin elicitor signaling in Arabidopsis. . PNAS 104:19613–18
    [Google Scholar]
  107. 107.  Miyata K, Hayafune M, Kobae Y, Kaku H, Nishizawa Y et al. 2016. Evaluation of the role of the LysM receptor-like kinase, OsNFR5/OsRLK2 for AM symbiosis in rice. Plant Cell Physiol 57:2283–90
    [Google Scholar]
  108. 108.  Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K et al. 2014. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol 55:1864–72
    [Google Scholar]
  109. 109.  Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K 2016. Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry 130:90–98
    [Google Scholar]
  110. 110.  Mukherjee A, Ane JM 2011. Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Mol. Plant-Microbe Interact 24:260–70
    [Google Scholar]
  111. 111.  Nadal M, Sawers R, Naseem S, Bassin B, Kulicke C et al. 2017. An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nat. Plants 3:17073
    [Google Scholar]
  112. 112.  Nagahashi G, Douds DD 1997. Appressorium formation by AM fungi on isolated cell walls of carrot roots. New Phytol 136:299–304
    [Google Scholar]
  113. 113.  Nelson DC, Scaffidi A, Dun EA, Waters MT, Flematti GR et al. 2011. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. . PNAS 108:8897–902
    [Google Scholar]
  114. 114.  Nicolson TH 1967. Vesicular-arbuscular mycorrhiza: a universal plant symbiosis. Sci. Prog. 55:561–81
    [Google Scholar]
  115. 115.  Nuclear P, Sommit D, Boonyuen N, Pudhom K 2010. Butenolide and furandione from an endophytic Aspergillus terreus. Chem. Pharm. . Bull 58:1221–23
    [Google Scholar]
  116. 116.  Olah B, Briere C, Becard G, Denarie J, Gough C 2005. Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207
    [Google Scholar]
  117. 117.  Oldroyd GE 2013. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11:252–63
    [Google Scholar]
  118. 118.  Op den Camp R, Streng A, De Mita S, Cao Q, Polone E et al. 2011. LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume Parasponia. . Science 331:909–12
    [Google Scholar]
  119. 119.  Pan H, Oztas O, Zhang X, Wu X, Stonoha C et al. 2016. A symbiotic SNARE protein generated by alternative termination of transcription. Nat. Plants 2:15197
    [Google Scholar]
  120. 120.  Park HJ, Floss DS, Levesque-Tremblay V, Bravo A, Harrison MJ 2015. Hyphal branching during arbuscule development requires Reduced Arbuscular Mycorrhiza1. Plant Physiol 169:2774–88
    [Google Scholar]
  121. 121.  Parniske M 2000. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease?. Curr. Opin. Plant Biol. 3:320–28
    [Google Scholar]
  122. 122.  Parniske M 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6:763–75
    [Google Scholar]
  123. 123.  Parvatkar RR, D'Souza C, Tripathi A, Naik CG 2009. Aspernolides A and B, butenolides from a marine-derived fungus Aspergillus terreus. . Phytochemistry 70:128–32
    [Google Scholar]
  124. 124.  Paszkowski U, Kroken S, Roux C, Briggs S 2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. PNAS 99:13324–29
    [Google Scholar]
  125. 125.  Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V et al. 2016. A CCaMK- CYCLOPS-DELLA complex activates transcription of RAM1 to regulate arbuscule branching. Curr. Biol. 26:987–98
    [Google Scholar]
  126. 126.  Pimprikar P, Gutjahr C 2018. Transcriptional regulation of arbuscular mycorrhiza development. Plant Cell Physiol 59:673–90
    [Google Scholar]
  127. 127.  Pirozynski KA, Malloch DW 1975. The origin of land plants: a matter of mycotrophism. Biosystems 6:153–64
    [Google Scholar]
  128. 128.  Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG et al. 2011. Strigolactones regulate protonema branching and act as a quorum sensing–like signal in the moss Physcomitrella patens. . Development 138:1531–39
    [Google Scholar]
  129. 129.  Pumplin N, Harrison MJ 2009. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151:809–19
    [Google Scholar]
  130. 130.  Pumplin N, Zhang X, Noar RD, Harrison MJ 2012. Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. PNAS 109:E665–72
    [Google Scholar]
  131. 131.  Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y et al. 2003. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–92
    [Google Scholar]
  132. 132.  Rasmussen SR, Fuchtbauer W, Novero M, Volpe V, Malkov N et al. 2016. Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor. Sci. Rep. 6:29733
    [Google Scholar]
  133. 133.  Rausch C, Daram P, Brunner S, Jansa J, Laloi M et al. 2001. A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–66
    [Google Scholar]
  134. 134.  Redecker D, Kodner R, Graham LE 2000. Glomalean fungi from the Ordovician. Science 289:1920–21
    [Google Scholar]
  135. 135.  Remy W, Taylor TN, Hass H, Kerp H 1994. Four hundred-million-year-old vesicular arbuscular mycorrhizae. PNAS 91:11841–43
    [Google Scholar]
  136. 136.  Rich MK, Nouri E, Courty PE, Reinhardt D 2017. Diet of arbuscular mycorrhizal fungi: bread and butter?. Trends Plant Sci 22:652–60
    [Google Scholar]
  137. 137.  Rich MK, Schorderet M, Bapaume L, Falquet L, Morel P et al. 2015. The petunia GRAS transcription factor ATA/RAM1 regulates symbiotic gene expression and fungal morphogenesis in arbuscular mycorrhiza. Plant Physiol 168:788–97
    [Google Scholar]
  138. 138.  Ried MK, Antolin-Llovera M, Parniske M 2014. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases. eLife 3:e03891
    [Google Scholar]
  139. 139.  Rival P, Bono J-J, Gough C, Bensmihen S, Rosenberg C 2013. Cell autonomous and non-cell autonomous control of rhizobial and mycorrhizal infection in Medicago truncatula. Plant Signal. . Behav 8:e22999
    [Google Scholar]
  140. 140.  Rival P, de Billy F, Bono J-J, Gough C, Rosenberg C, Bensmihen S 2012. Epidermal and cortical roles of NFP and DMI3 in coordinating early steps of nodulation in Medicago truncatula. . Development 139:3383–91
    [Google Scholar]
  141. 141.  Ropars J, Toro KS, Noel J, Pelin A, Charron P et al. 2016. Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nat. Microbiol. 1:16033
    [Google Scholar]
  142. 142.  Roth R, Paszkowski U 2017. Plant carbon nourishment of arbuscular mycorrhizal fungi. Curr. Opin. Plant Biol. 39:50–56
    [Google Scholar]
  143. 143.  Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H et al. 2007. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. . Plant Cell 19:610–24
    [Google Scholar]
  144. 144.  Salvioli A, Ghignone S, Novero M, Navazio L, Venice F et al. 2016. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 10:130–44
    [Google Scholar]
  145. 145.  Sawers RJ, Gutjahr C, Paszkowski U 2008. Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13:93–97
    [Google Scholar]
  146. 146.  Schmelzer E 2002. Cell polarization, a crucial process in fungal defence. Trends Plant Sci 7:411–15
    [Google Scholar]
  147. 147.  Schüßler A, Martin H, Cohen D, Fitz M, Wipf D 2006. Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–36
    [Google Scholar]
  148. 148.  Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG 1995. Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol 108:7–15
    [Google Scholar]
  149. 149.  Sieberer BJ, Chabaud M, Fournier J, Timmers AC, Barker DG 2012. A switch in Ca2+ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula. . Plant J 69:822–30
    [Google Scholar]
  150. 150.  Singh S, Katzer K, Lambert J, Cerri M, Parniske M 2014. CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 15:139–52
    [Google Scholar]
  151. 151.  Smith SE, Read DJ 2008. Mycorrhizal Symbiosis Cambridge, MA: Acad. Press, 3rd ed..
  152. 152.  Smith SE, Smith FA, Jakobsen I 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20
    [Google Scholar]
  153. 153.  Smith SE, Smith FA, Jakobsen I 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–24
    [Google Scholar]
  154. 154.  Solaiman MZ, Ezawa T, Kojima T, Saito M 1999. Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Appl. Environ. Microbiol. 65:5604–6
    [Google Scholar]
  155. 155.  Stanga JP, Smith SM, Briggs WR, Nelson DC 2013. SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis. . Plant Physiol. 163:318–30
    [Google Scholar]
  156. 156.  Stirnberg P, van De Sande K, Leyser O MAX1 and MAX2 control shoot lateral branching in Arabidopsis. . Development 129:1131–41
    [Google Scholar]
  157. 157.  Stracke S, Kistner C, Yoshida S, Mulder L, Sato S et al. 2002. A plant receptor–like kinase required for both bacterial and fungal symbiosis. Nature 417:959–62
    [Google Scholar]
  158. 158.  Strullu-Derrien C, Kenrick P, Pressel S, Duckett JG, Rioult JP, Strullu DG 2014. Fungal associations in Horneophyton ligneri from the Rhynie Chert (c. 407 million year old) closely resemble those in extant lower land plants: novel insights into ancestral plant-fungus symbioses. New Phytol 203:964–79
    [Google Scholar]
  159. 159.  Sun J, Miller JB, Granqvist E, Wiley-Kalil A, Gobbato E et al. 2015. Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell 27:823–38
    [Google Scholar]
  160. 160.  Sun XD, Ni M 2011. HYPOSENSITIVE TO LIGHT, an alpha/beta fold protein, acts downstream of ELONGATED HYPOCOTYL 5 to regulate seedling de-etiolation. Mol. Plant 4:116–26
    [Google Scholar]
  161. 161.  Sun YK, Flematti GR, Smith SM, Waters MT 2016. Reporter gene–facilitated detection of compounds in Arabidopsis leaf extracts that activate the karrikin signaling pathway. Front. Plant Sci. 7:1799
    [Google Scholar]
  162. 162.  Takeda N, Handa Y, Tsuzuki S, Kojima M, Sakakibara H, Kawaguchi M 2015. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus. . Plant Physiol 167:545–57
    [Google Scholar]
  163. 163.  Takeda N, Maekawa T, Hayashi M 2012. Nuclear-localized and deregulated calcium- and calmodulin-dependent protein kinase activates rhizobial and mycorrhizal responses in Lotus japonicus. . Plant Cell 24:810–22
    [Google Scholar]
  164. 164.  Takeda N, Tsuzuki S, Suzaki T, Parniske M, Kawaguchi M 2013. CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development. Plant Cell Physiol 54:1711–23
    [Google Scholar]
  165. 165.  Tang N, San Clemente H, Roy S, Becard G, Zhao B, Roux C 2016. A survey of the gene repertoire of Gigaspora rosea unravels conserved features among glomeromycota for obligate biotrophy. Front. Microbiol. 7:233
    [Google Scholar]
  166. 166.  Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. PNAS 110:20117–22
    [Google Scholar]
  167. 167.  Trepanier M, Becard G, Moutoglis P, Willemot C, Gagne S et al. 2005. Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl. Environ. Microbiol. 71:5341–47
    [Google Scholar]
  168. 168.  Tsuzuki S, Handa Y, Takeda N, Kawaguchi M 2016. Strigolactone-induced putative secreted protein 1 is required for the establishment of symbiosis by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mol. . Plant-Microbe Interact 29:277–86
    [Google Scholar]
  169. 169.  Ueno K, Furumoto T, Umeda S, Mizutani M, Takikawa H et al. 2014. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry 108:122–28
    [Google Scholar]
  170. 170.  Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T et al. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200
    [Google Scholar]
  171. 171.  van Dam NM, Bouwmeester HJ 2016. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21:256–65
    [Google Scholar]
  172. 172.  van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R et al. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72
    [Google Scholar]
  173. 173.  Venkateshwaran M, Jayaraman D, Chabaud M, Genre A, Balloon AJ et al. 2015. A role for the mevalonate pathway in early plant symbiotic signaling. PNAS 112:9781–86
    [Google Scholar]
  174. 174.  Vernie T, Camut S, Camps C, Rembliere C, de Carvalho-Niebel F et al. 2016. PUB1 interacts with the receptor kinase DMI2 and negatively regulates rhizobial and arbuscular mycorrhizal symbioses through its ubiquitination activity in Medicago truncatula. . Plant Physiol 170:2312–24
    [Google Scholar]
  175. 175.  Wang B, Qiu YL 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363
    [Google Scholar]
  176. 176.  Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B et al. 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 22:2242–46
    [Google Scholar]
  177. 177.  Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E 2017. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol. Plant 10:1147–58
    [Google Scholar]
  178. 178.  Waters MT, Gutjahr C, Bennett T, Nelson DC 2017. Strigolactone signaling and evolution. Annu. Rev. Plant Biol. 68:291–322
    [Google Scholar]
  179. 179.  Waters MT, Nelson DC, Scaffidi A, Flematti GR, Sun YK et al. 2012. Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis.. Development 139:1285–95
    [Google Scholar]
  180. 180.  Waters MT, Smith SM 2013. KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings. Mol. Plant 6:63–75
    [Google Scholar]
  181. 181.  Wegel E, Schauser L, Sandal N, Stougaard J, Parniske M 1998. Mycorrhiza mutants of Lotus japonicus define genetically independent steps during symbiotic infection. Mol. Plant-Microbe Interact. 11:933–36
    [Google Scholar]
  182. 182.  Wewer V, Brands M, Dormann P 2014. Fatty acid synthesis and lipid metabolism in the obligate biotrophic fungus Rhizophagus irregularis during mycorrhization of Lotus japonicus. . Plant J 79:398–412
    [Google Scholar]
  183. 183.  Xue L, Cui H, Buer B, Vijayakumar V, Delaux PM et al. 2015. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. . Plant Physiol 167:854–71
    [Google Scholar]
  184. 184.  Yang SY, Gronlund M, Jakobsen I, Grotemeyer MS, Rentsch D et al. 2012. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24:4236–51
    [Google Scholar]
  185. 185.  Yano K, Yoshida S, Muller J, Singh S, Banba M et al. 2008. CYCLOPS, a mediator of symbiotic intracellular accommodation. PNAS 105:20540–45
    [Google Scholar]
  186. 186.  Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M et al. 2012. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol 196:1208–16
    [Google Scholar]
  187. 187.  Yu N, Luo D, Zhang X, Liu J, Wang W et al. 2014. A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Res 24:130–33
    [Google Scholar]
  188. 188.  Yuan S, Zhu H, Gou H, Fu W, Liu L et al. 2012. A ubiquitin ligase of symbiosis receptor kinase involved in nodule organogenesis. Plant Physiol 160:106–17
    [Google Scholar]
  189. 189.  Zhang Q, Blaylock LA, Harrison MJ 2010. Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–97
    [Google Scholar]
  190. 190.  Zhang X, Dong W, Sun J, Feng F, Deng Y et al. 2015. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J 81:258–67
    [Google Scholar]
  191. 191.  Zhang X, Pumplin N, Ivanov S, Harrison MJ 2015. EXO70I is required for development of a sub-domain of the periarbuscular membrane during arbuscular mycorrhizal symbiosis. Curr. Biol. 25:2189–95
    [Google Scholar]
  192. 192.  Zhang XC, Wu X, Findley S, Wan J, Libault M et al. 2007. Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiol 144:623–36
    [Google Scholar]
  193. 193.  Zhao J, Wang T, Wang M, Liu Y, Yuan S et al. 2014. DWARF3 participates in an SCF complex and associates with DWARF14 to suppress rice shoot branching. Plant Cell Physiol 55:1096–109
    [Google Scholar]
  194. 194.  Zipfel C, Oldroyd GE 2017. Plant signalling in symbiosis and immunity. Nature 543:328–36
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-080516-035521
Loading
/content/journals/10.1146/annurev-phyto-080516-035521
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error