1932

Abstract

In this article, we review the anatomical inputs and outputs to the mouse primary visual cortex, area V1. Our survey of data from the Allen Institute Mouse Connectivity project indicates that mouse V1 is highly interconnected with both cortical and subcortical brain areas. This pattern of innervation allows for computations that depend on the state of the animal and on behavioral goals, which contrasts with simple feedforward, hierarchical models of visual processing. Thus, to have an accurate description of the function of V1 during mouse behavior, its involvement with the rest of the brain circuitry has to be considered. Finally, it remains an open question whether the primary visual cortex of higher mammals displays the same degree of sensorimotor integration in the early visual system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091517-034407
2019-09-15
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091517-034407.html?itemId=/content/journals/10.1146/annurev-vision-091517-034407&mimeType=html&fmt=ahah

Literature Cited

  1. Aggleton JP, Keen S, Warburton EC, Bussey TJ 1997. Extensive cytotoxic lesions involving both the rhinal cortices and area TE impair recognition but spare spatial alternation in the rat. Brain Res. Bull. 43:279–87
    [Google Scholar]
  2. Agster KL, Burwell RD. 2009. Cortical efferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Hippocampus 19:1159–86
    [Google Scholar]
  3. Ahmadlou M, Zweifel LS, Heimel JA 2018. Functional modulation of primary visual cortex by the superior colliculus in the mouse. Nat. Commun. 9:3895
    [Google Scholar]
  4. Alexander AS, Nitz DA. 2015. Retrosplenial cortex maps the conjunction of internal and external spaces. Nat. Neurosci. 18:1143–51
    [Google Scholar]
  5. Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC 2011. Functional specialization of mouse higher visual cortical areas. Neuron 72:1025–39
    [Google Scholar]
  6. Aston-Jones G, Bloom FE. 1981. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1:876–86
    [Google Scholar]
  7. Aston-Jones G, Cohen JD. 2005. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28:403–50
    [Google Scholar]
  8. Aston-Jones G, Rajkowski J, Kubiak P, Valentino RJ, Shipley MT 1996. Role of the locus coeruleus in emotional activation. Prog. Brain Res. 108:379–402
    [Google Scholar]
  9. Attinger A, Wang B, Keller GB 2017. Visuomotor coupling shapes the functional development of mouse visual cortex. Cell 169:1291–302.e14
    [Google Scholar]
  10. Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529:345–50
    [Google Scholar]
  11. Bakin JS, Weinberger NM. 1996. Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. PNAS 93:11219–24
    [Google Scholar]
  12. Baroncelli L, Sale A, Viegi A, Maya Vetencourt JF, De Pasquale R et al. 2010. Experience-dependent reactivation of ocular dominance plasticity in the adult visual cortex. Exp. Neurol. 226:100–9
    [Google Scholar]
  13. Barth T, Parker S, Sinnamon H 1982. Unilateral lesions of the anteromedial cortex in the rat impair approach to contralateral visual cues. Physiol. Behav. 29:141–47
    [Google Scholar]
  14. Barthas F, Kwan AC. 2017. Secondary motor cortex: where ‘sensory’ meets ‘motor’ in the rodent frontal cortex. Trends Neurosci 40:181–93
    [Google Scholar]
  15. Basso MA, May PJ. 2017. Circuits for action and cognition: a view from the superior colliculus. Annu. Rev. Vis. Sci. 3:197–226
    [Google Scholar]
  16. Beltramo R, Scanziani M. 2019. A collicular visual cortex: neocortical space for an ancient midbrain visual structure. Science 363:64–69
    [Google Scholar]
  17. Bennett C, Gale SD, Garrett ME, Newton ML, Callaway EM et al. 2019. Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron 102:477–92.e5
    [Google Scholar]
  18. Bigl V, Woolf NJ, Butcher LL 1982. Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain Res. Bull. 8:727–49
    [Google Scholar]
  19. Bista P, D'Souza RD, Meier AM, Ji W, Burkhalter A 2019. Spatial clustering of inhibition in mouse primary visual cortex. bioRxiv 608125
  20. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–68
    [Google Scholar]
  21. Brewer AA, Barton B. 2016. Maps of the auditory cortex. Annu. Rev. Neurosci. 39:385–407
    [Google Scholar]
  22. Briggs F, Mangun GR, Usrey WM 2013. Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature 499:476–80
    [Google Scholar]
  23. Burkhalter A. 2016. The network for intracortical communication in mouse visual cortex. Micro-, Meso- and Macro-Connectomics of the Brain H Kennedy, DC Van Essen, Y Christen 31–43 Berlin: Springer
    [Google Scholar]
  24. Burwell RD, Amaral DG. 1998. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J. Comp. Neurol. 398:179–205
    [Google Scholar]
  25. Bussey TJ, Muir JL, Everitt BJ, Robbins TW 1997. Triple dissociation of anterior cingulate, posterior cingulate, and medial frontal cortices on visual discrimination tasks using a touchscreen testing procedure for the rat. Behav. Neurosci. 111:920–36
    [Google Scholar]
  26. Cang J, Savier E, Barchini J, Liu X 2018. Visual function, organization, and development of the mouse superior colliculus. Annu. Rev. Vis. Sci. 4:239–62
    [Google Scholar]
  27. Carpenter RHS. 1988. Movements of the Eyes London: Pion Ltd. , 2nd ed..
  28. Chen LL, Lin L-H, Barnes CA, McNaughton BL 1994. Head-direction cells in the rat posterior cortex. Exp. Brain Res. 101:24–34
    [Google Scholar]
  29. Cho J, Sharp PE. 2001. Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav. Neurosci. 115:3–25
    [Google Scholar]
  30. De Franceschi G, Vivattanasarn T, Saleem AB, Solomon SG 2016. Vision guides selection of freeze or flight defense strategies in mice. Curr. Biol. 26:2150–54
    [Google Scholar]
  31. Dean P. 1981. Grating detection and visual acuity after lesions of striate cortex in hooded rats. Exp. Brain Res. 43:145–53
    [Google Scholar]
  32. Dean P, Redgrave P, Westby GWM 1989. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci 12:137–47
    [Google Scholar]
  33. Deneux T, Harrell ER, Kempf A, Ceballo S, Filipchuk A, Bathellier B 2019. Context-dependent signaling of coincident auditory and visual events in primary visual cortex. eLife 8:e44006
    [Google Scholar]
  34. Denman DJ, Contreras D. 2015. Complex effects on in vivo visual responses by specific projections from mouse cortical layer 6 to dorsal lateral geniculate nucleus. J. Neurosci. 35:9265–80
    [Google Scholar]
  35. Distler C, Hoffmann K-P. 2001. Cortical input to the nucleus of the optic tract and dorsal terminal nucleus (NOT-DTN) in macaques: a retrograde tracing study. Cereb. Cortex 11:572–80
    [Google Scholar]
  36. D'Souza RD, Meier AM, Bista P, Wang Q, Burkhalter A 2016. Recruitment of inhibition and excitation across mouse visual cortex depends on the hierarchy of interconnecting areas. eLife 5:e19332
    [Google Scholar]
  37. Eacott MJ, Machin PE, Gaffan EA 2001. Elemental and configural visual discrimination learning following lesions to perirhinal cortex in the rat. Behav. Brain Res. 124:55–70
    [Google Scholar]
  38. Eichenbaum H, Lipton PA. 2008. Towards a functional organization of the medial temporal lobe memory system: role of the parahippocampal and medial entorhinal cortical areas. Hippocampus 18:1314–24
    [Google Scholar]
  39. Ellard CG, Chapman DG. 1991. The effects of posterior cortical lesions on responses to visual threats in the Mongolian gerbil (Meriones unguiculatus). Behav. Brain Res. 44:163–67
    [Google Scholar]
  40. Ellard CG, Goodale MA. 1988. A functional analysis of the collicular output pathways: a dissociation of deficits following lesions of the dorsal tegmental decussation and the ipsilateral collicular efferent bundle in the Mongolian gerbil. Exp. Brain Res. 71:307–19
    [Google Scholar]
  41. Ellard CG, Goodale MA, Scorfield DM, Lawrence C 1986. Visual cortical lesions abolish the use of motion parallax in the Mongolian gerbil. Exp. Brain Res. 64:599–602
    [Google Scholar]
  42. Enkhjargal N, Matsumoto J, Chinzorig C, Berthoz A, Ono T, Nishijo H 2014. Rat thalamic neurons encode complex combinations of heading and movement directions and the trajectory route during translocation with sensory conflict. Front. Behav. Neurosci. 8:242
    [Google Scholar]
  43. Erisken S, Vaiceliunaite A, Jurjut O, Fiorini M, Katzner S, Busse L 2014. Effects of locomotion extend throughout the mouse early visual system. Curr. Biol. 24:2899–907
    [Google Scholar]
  44. Erlich JC, Bialek M, Brody CD 2011. A cortical substrate for memory-guided orienting in the rat. Neuron 72:330–43
    [Google Scholar]
  45. Euler T, Wässle H. 1995. Immunocytochemical identification of cone bipolar cells in the rat retina. J. Comp. Neurol. 361:461–78
    [Google Scholar]
  46. Feinberg EH, Meister M. 2015. Orientation columns in the mouse superior colliculus. Nature 519:229–32
    [Google Scholar]
  47. Felleman DJ, Van Essen DC 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:1–47
    [Google Scholar]
  48. Fiser A, Mahringer D, Oyibo HK, Petersen AV, Leinweber M, Keller GB 2016. Experience-dependent spatial expectations in mouse visual cortex. Nat. Neurosci. 19:1658–64
    [Google Scholar]
  49. Froudarakis E, Berens P, Ecker AS, Cotton RJ, Sinz FH et al. 2014. Population code in mouse V1 facilitates readout of natural scenes through increased sparseness. Nat. Neurosci. 17:851–57
    [Google Scholar]
  50. Garrett ME, Nauhaus I, Marshel JH, Callaway EM 2014. Topography and areal organization of mouse visual cortex. J. Neurosci. 34:12587–600
    [Google Scholar]
  51. Gilbert CD, Li W. 2013. Top-down influences on visual processing. Nat. Rev. Neurosci. 14:350–63
    [Google Scholar]
  52. Goard M, Dan Y. 2009. Basal forebrain activation enhances cortical coding of natural scenes. Nat. Neurosci. 12:1444–49
    [Google Scholar]
  53. Goard MJ, Pho GN, Woodson J, Sur M 2016. Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions. eLife 5:e13764
    [Google Scholar]
  54. Goltstein PM, Meijer GT, Pennartz CM 2018. Conditioning sharpens the spatial representation of rewarded stimuli in mouse primary visual cortex. eLife 7:e37683
    [Google Scholar]
  55. Grieve K, Sillito A. 1995. Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum. J. Neurosci. 15:4868–74
    [Google Scholar]
  56. Hayhow WR, Webb C, Jervie A 1960. The accessory optic fiber system in the rat. J. Comp. Neurol. 115:187–215
    [Google Scholar]
  57. Heffner RS. 2004. Primate hearing from a mammalian perspective. Anat. Rec. 281A:1111–22
    [Google Scholar]
  58. Held R, Hein A. 1963. Movement-produced stimulation in the development of visually guided behavior. J. Comp. Physiol. Psychol. 56:872–76
    [Google Scholar]
  59. Henschke JU, Noesselt T, Scheich H, Budinger E 2015. Possible anatomical pathways for short-latency multisensory integration processes in primary sensory cortices. Brain Struct. Funct. 220:955–77
    [Google Scholar]
  60. Hoffmann KP, Distler C, Ilg U 1992. Callosal and superior temporal sulcus contributions to receptive field properties in the macaque monkey's nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract. J. Comp. Neurol. 321:150–62
    [Google Scholar]
  61. Hovde K, Gianatti M, Witter MP, Whitlock JR 2019. Architecture and organization of mouse posterior parietal cortex relative to extrastriate areas. Eur. J. Neurosci. 49:1313–29
    [Google Scholar]
  62. Hoy JL, Yavorska I, Wehr M, Niell CM 2016. Vision drives accurate approach behavior during prey capture in laboratory mice. Curr. Biol. 26:3046
    [Google Scholar]
  63. Hughes A. 1977. The refractive state of the rat eye. Vis. Res. 17:927–39
    [Google Scholar]
  64. Huh CYL, Peach JP, Bennett C, Vega RM, Hestrin S 2018. Feature-specific organization of feedback pathways in mouse visual cortex. Curr. Biol. 28:114–20.e5
    [Google Scholar]
  65. Ibrahim LA, Mesik L, Ji X-Y, Fang Q, Li H-F et al. 2016. Cross-modality sharpening of visual cortical processing through layer-1-mediated inhibition and disinhibition. Neuron 89:1031–45
    [Google Scholar]
  66. Ingle D. 1973a. Evolutionary perspectives on the function of the optic tectum. Brain Behav. Evol. 8:211–37
    [Google Scholar]
  67. Ingle D. 1973b. Two visual systems in the frog. Science 181:1053–55
    [Google Scholar]
  68. Ingle D. 1981. New methods for analysis of vision in the gerbil. Behav. Brain Res. 3:151–73
    [Google Scholar]
  69. Ingle D, Cheal M, Dizio P 1979. Cine analysis of visual orientation and pursuit by the Mongolian gerbil. J. Comp. Physiol. Psychol. 93:919–28
    [Google Scholar]
  70. Ito S, Feldheim DA. 2018. The mouse superior colliculus: an emerging model for studying circuit formation and function. Front. Neural Circuits 12:10
    [Google Scholar]
  71. Itokazu T, Hasegawa M, Kimura R, Osaki H, Albrecht U-R et al. 2018. Streamlined sensory motor communication through cortical reciprocal connectivity in a visually guided eye movement task. Nat. Commun. 9:338
    [Google Scholar]
  72. Iurilli G, Ghezzi D, Olcese U, Lassi G, Nazzaro C et al. 2012. Sound-driven synaptic inhibition in primary visual cortex. Neuron 73:814–28
    [Google Scholar]
  73. Jacob SN, Nienborg H. 2018. Monoaminergic neuromodulation of sensory processing. Front. Neural Circuits 12:51
    [Google Scholar]
  74. Jampel RS. 1960. Convergence, divergence, pupillary reactions and accommodation of the eyes from faradic stimulation of the macaque brain. J. Comp. Neurol. 115:371–99
    [Google Scholar]
  75. Jennings JH, Kim CK, Marshel JH, Raffiee M, Ye L et al. 2019. Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour. Nature 565:645–49
    [Google Scholar]
  76. Juavinett AL, Callaway EM. 2015. Pattern and component motion responses in mouse visual cortical areas. Curr. Biol. 25:1759–64
    [Google Scholar]
  77. Jurgens CWD, Bell KA, McQuiston AR, Guido W 2012. Optogenetic stimulation of the corticothalamic pathway affects relay cells and GABAergic neurons differently in the mouse visual thalamus. PLOS ONE 7:e45717
    [Google Scholar]
  78. Kaas JH. 1993. The functional organization of somatosensory cortex in primates. Ann. Anat. 175:509–18
    [Google Scholar]
  79. Kahn JB, Ward RD, Kahn LW, Rudy NM, Kandel ER et al. 2012. Medial prefrontal lesions in mice impair sustained attention but spare maintenance of information in working memory. Learn. Mem. 19:513–17
    [Google Scholar]
  80. Kandler S, Mao D, McNaughton BL, Bonin V 2018. Encoding of tactile context in the mouse visual cortex. bioRxiv 199364
  81. Kaneko M, Fu Y, Stryker MP 2017. Locomotion induces stimulus-specific response enhancement in adult visual cortex. J. Neurosci. 37:3532–43
    [Google Scholar]
  82. Kerr JND, Denk W. 2008. Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9:195–205
    [Google Scholar]
  83. Kim J-H, Jung A-H, Jeong D, Choi I, Kim K et al. 2016. Selectivity of neuromodulatory projections from the basal forebrain and locus ceruleus to primary sensory cortices. J. Neurosci. 36:5314–27
    [Google Scholar]
  84. Lamme V. 1995. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15:1605–15
    [Google Scholar]
  85. Lamme VAF, Roelfsema PR. 2000. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–79
    [Google Scholar]
  86. Larsen RS, Turschak E, Daigle T, Zeng H, Zhuang J, Waters J 2018. Activation of neuromodulatory axon projections in primary visual cortex during periods of locomotion and pupil dilation. bioRxiv 502013
  87. Lashley KS. 1929. Brain Mechanisms and Intelligence: A Quantitative Study of Injuries to the Brain Chicago: Univ. Chicago Press
  88. Lee AM, Hoy JL, Bonci A, Wilbrecht L, Stryker MP, Niell CM 2014. Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron 83:455–66
    [Google Scholar]
  89. Lee K, Tehovnik EJ. 1995. Topographic distribution of fixation-related units in the dorsomedial frontal cortex of the rhesus monkey. Eur. J. Neurosci. 7:1005–11
    [Google Scholar]
  90. Legg CR, Lambert S. 1990. Distance estimation in the hooded rat: experimental evidence for the role of motion cues. Behav. Brain Res. 41:11–20
    [Google Scholar]
  91. Leinweber M, Ward DR, Sobczak JM, Attinger A, Keller GB 2017. A sensorimotor circuit in mouse cortex for visual flow predictions. Erratum. Neuron 96:1204
    [Google Scholar]
  92. Li J, Guido W, Bickford ME 2003. Two distinct types of corticothalamic EPSPs and their contribution to short-term synaptic plasticity. J. Neurophysiol. 90:3429–40
    [Google Scholar]
  93. Licata AM, Kaufman MT, Raposo D, Ryan MB, Sheppard JP, Churchland AK 2017. Posterior parietal cortex guides visual decisions in rats. J. Neurosci. 37:4954–66
    [Google Scholar]
  94. Liu B, Huberman AD, Scanziani M 2016. Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour. Nature 538:383–87
    [Google Scholar]
  95. Liu C-H, Coleman JE, Davoudi H, Zhang K, Hussain Shuler MG 2015. Selective activation of a putative reinforcement signal conditions cued interval timing in primary visual cortex. Curr. Biol. 25:1551–61
    [Google Scholar]
  96. Liu Y, Rodenkirch C, Moskowitz N, Schriver B, Wang Q 2017. Dynamic lateralization of pupil dilation evoked by locus coeruleus activation results from sympathetic, not parasympathetic, contributions. Cell Rep 20:3099–112
    [Google Scholar]
  97. Lucas RJ, Douglas RH, Foster RG 2001. Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat. Neurosci. 4:621–26
    [Google Scholar]
  98. Lyamzin D, Benucci A. 2019. The mouse posterior parietal cortex: anatomy and functions. Neurosci. Res. 140:14–22
    [Google Scholar]
  99. Malvaez M, Shieh C, Murphy MD, Greenfield VY, Wassum KM 2019. Distinct cortical-amygdala projections drive reward value encoding and retrieval. Nat. Neurosci. 22:762–69
    [Google Scholar]
  100. Marshel JH, Garrett ME, Nauhaus I, Callaway EM 2011. Functional specialization of seven mouse visual cortical areas. Neuron 72:1040–54
    [Google Scholar]
  101. McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E et al. 2015. Waking state: Rapid variations modulate neural and behavioral responses. Neuron 87:1143–61
    [Google Scholar]
  102. Meijer GT, Montijn JS, Pennartz CMA, Lansink CS 2017. Audiovisual modulation in mouse primary visual cortex depends on cross-modal stimulus configuration and congruency. J. Neurosci. 37:8783–96
    [Google Scholar]
  103. Meijer GT, Pie JL, Dolman TL, Pennartz CMA, Lansink CS 2018. Audiovisual integration enhances stimulus detection performance in mice. Front. Behav. Neurosci. 12:231
    [Google Scholar]
  104. Meister M, Cox D. 2013. Rats maintain a binocular field centered on the horizon. F1000Research 2:176
    [Google Scholar]
  105. Menegas W, Bergan JF, Ogawa SK, Isogai Y, Umadevi Venkataraju K et al. 2015. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4:e10032
    [Google Scholar]
  106. Milczarek MM, Vann SD, Sengpiel F 2018. Spatial memory engram in the mouse retrosplenial cortex. Curr. Biol. 28:1975–80.e6
    [Google Scholar]
  107. Minces VH, Alexander A, Datlow M, Alfonso S, Chiba AA 2013. The role of visual cortex acetylcholine in learning to discriminate temporally modulated visual stimuli. Front. Behav. Neurosci. 7:16
    [Google Scholar]
  108. Mitchell AS, Czajkowski R, Zhang N, Jeffery K, Nelson A 2017. Retrosplenial cortex and its role in spatial cognition. bioRxiv 190801
  109. Mizumori SJ, Williams JD. 1993. Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats. J. Neurosci. 13:4015–28
    [Google Scholar]
  110. Mlinar EJ, Goodale MA. 1984. Cortical and tectal control of visual orientation in the gerbil: evidence for parallel channels. Exp. Brain Res. 55:33–48
    [Google Scholar]
  111. Monaco S, Chen Y, Menghi N, Crawford JD 2018. Action-specific feature processing in the human visual cortex. bioRxiv 420760
  112. Morin LP, Studholme KM. 2014. Retinofugal projections in the mouse. J. Comp. Neurol. 522:3733–53
    [Google Scholar]
  113. Muir JL, Everitt BJ, Robbins TW 1996. The cerebral cortex of the rat and visual attentional function: dissociable effects of mediofrontal, cingulate, anterior dorsolateral, and parietal cortex lesions on a five-choice serial reaction time task. Cereb. Cortex 6:470–81
    [Google Scholar]
  114. Murata Y, Colonnese MT. 2016. An excitatory cortical feedback loop gates retinal wave transmission in rodent thalamus. eLife 5:e18816
    [Google Scholar]
  115. Murgas KA, Wilson AM, Michael V, Glickfeld LL 2019. Unique spatial integration in mouse primary visual cortex and higher visual areas. bioRxiv 643007
  116. Murray EA, Bussey TJ, Saksida LM 2007. Visual perception and memory: a new view of medial temporal lobe function in primates and rodents. Annu. Rev. Neurosci. 30:99–122
    [Google Scholar]
  117. Musall S, Kaufman MT, Juavinett AL, Gluf S, Churchland AK 2019. Single-trial neural dynamics are dominated by richly varied movements. bioRxiv 308288
  118. Mustari MJ, Fuchs AF. 1989. Response properties of single units in the lateral terminal nucleus of the accessory optic system in the behaving primate. J. Neurophysiol. 61:1207–20
    [Google Scholar]
  119. Neafsey EJ, Bold EL, Haas G, Hurley-Gius KM, Quirk G et al. 1986. The organization of the rat motor cortex: a microstimulation mapping study. Brain Res 396:77–96
    [Google Scholar]
  120. Nelson AJD, Hindley EL, Pearce JM, Vann SD, Aggleton JP 2015. The effect of retrosplenial cortex lesions in rats on incidental and active spatial learning. Front. Behav. Neurosci. 9:11
    [Google Scholar]
  121. Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–79
    [Google Scholar]
  122. Nishio N, Tsukano H, Hishida R, Abe M, Nakai J et al. 2018. Higher visual responses in the temporal cortex of mice. Sci. Rep. 8:11136
    [Google Scholar]
  123. Odoemene O, Pisupati S, Nguyen H, Churchland AK 2018. Visual evidence accumulation guides decision-making in unrestrained mice. J. Neurosci. 38:10143–55
    [Google Scholar]
  124. Oh SW, Harris JA, Ng L, Winslow B, Cain N et al. 2014. A mesoscale connectome of the mouse brain. Nature 508:207–14
    [Google Scholar]
  125. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC 2005. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603
    [Google Scholar]
  126. Olcese U, Iurilli G, Medini P 2013. Cellular and synaptic architecture of multisensory integration in the mouse neocortex. Neuron 79:579–93
    [Google Scholar]
  127. Olds J, Milner P. 1954. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47:419–27
    [Google Scholar]
  128. Ongur D. 2000. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10:206–19
    [Google Scholar]
  129. Pafundo DE, Nicholas MA, Zhang R, Kuhlman SJ 2016. Top-down-mediated facilitation in the visual cortex is gated by subcortical neuromodulation. J. Neurosci. 36:2904–14
    [Google Scholar]
  130. Palagina G, Meyer JF, Smirnakis SM 2017. Complex visual motion representation in mouse area V1. J. Neurosci. 37:164–83
    [Google Scholar]
  131. Pascoli V, Terrier J, Hiver A, Lüscher C 2015. Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88:1054–66
    [Google Scholar]
  132. Paspalas CD, Papadopoulos GC. 2001. Serotoninergic afferents preferentially innervate distinct subclasses of peptidergic interneurons in the rat visual cortex. Brain Res 891:158–67
    [Google Scholar]
  133. Petersen CCH. 2007. The functional organization of the barrel cortex. Neuron 56:339–55
    [Google Scholar]
  134. Petruno SK, Clark RE, Reinagel P 2013. Evidence that primary visual cortex is required for image, orientation, and motion discrimination by rats. PLOS ONE 8:e56543
    [Google Scholar]
  135. Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC et al. 2013. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat. Neurosci. 16:1857–63
    [Google Scholar]
  136. Rancz EA, Moya J, Drawitsch F, Brichta AM, Canals S, Margrie TW 2015. Widespread vestibular activation of the rodent cortex. J. Neurosci. 35:5926–34
    [Google Scholar]
  137. Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS 2014. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84:355–62
    [Google Scholar]
  138. Reimer J, McGinley MJ, Liu Y, Rodenkirch C, Wang Q et al. 2016. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat. Commun. 7:13289
    [Google Scholar]
  139. Reynolds RP, Kinard WL, Degraff JJ, Leverage N, Norton JN 2010. Noise in a laboratory animal facility from the human and mouse perspectives. J. Am. Assoc. Lab. Anim. Sci. 49:592–97
    [Google Scholar]
  140. Rhoades RW, Chalupa LM. 1978. Functional properties of the corticotectal projection in the golden hamster. J. Comp. Neurol. 180:617–33
    [Google Scholar]
  141. Rolls E, Baylis L. 1994. Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. J. Neurosci. 14:5437–52
    [Google Scholar]
  142. Rosón MR, Bauer Y, Kotkat AH, Berens P, Euler T, Busse L 2019. Mouse dLGN receives functional input from a diverse population of retinal ganglion cells with limited convergence. Neuron 102:462–76.e8
    [Google Scholar]
  143. Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB 2016. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 19:299–307
    [Google Scholar]
  144. Roth MM, Helmchen F, Kampa BM 2012. Distinct functional properties of primary and posteromedial visual area of mouse neocortex. J. Neurosci. 32:9716–26
    [Google Scholar]
  145. Sakatani T, Isa T. 2007. Quantitative analysis of spontaneous saccade-like rapid eye movements in C57BL/6 mice. Neurosci. Res. 58:324–31
    [Google Scholar]
  146. Schiller PH, Tehovnik EJ. 2001. Look and see: how the brain moves your eyes about. Prog. Brain Res. 134:127–42
    [Google Scholar]
  147. Schiller PH, Tehovnik EJ. 2005. Neural mechanisms underlying target selection with saccadic eye movements. Prog. Brain Res. 149:157–71
    [Google Scholar]
  148. Schiller PH, Tehovnik EJ. 2015. Vision and the Visual System Oxford, UK: Oxford Univ. Press
  149. Schnabel UH, Kirchberger L, van Beest E, Mukherjee S, Barsegyan A et al. 2018. Feedforward and feedback processing during figure-ground perception in mice. bioRxiv 456459
  150. Schneider GE. 1969. Two visual systems. Science 163:895–902
    [Google Scholar]
  151. Scholl B, Burge J, Priebe NJ 2013. Binocular integration and disparity selectivity in mouse primary visual cortex. J. Neurophysiol. 109:3013–24
    [Google Scholar]
  152. Scholl B, Pattadkal JJ, Rowe A, Priebe NJ 2017. Functional characterization and spatial clustering of visual cortical neurons in the predatory grasshopper mouse Onychomys arenicola. J. . Neurophysiol 117:910–18
    [Google Scholar]
  153. Schwarz LA, Luo L. 2015. Organization of the locus coeruleus-norepinephrine system. Curr. Biol. 25:R1051–56
    [Google Scholar]
  154. Seillier L, Lorenz C, Kawaguchi K, Ott T, Nieder A et al. 2017. Serotonin decreases the gain of visual responses in awake macaque V1. J. Neurosci. 37:11390–405
    [Google Scholar]
  155. Shang C, Liu A, Li D, Xie Z, Chen Z et al. 2019. A subcortical excitatory circuit for sensory-triggered predatory hunting in mice. Nat. Neurosci. 22:909
    [Google Scholar]
  156. Sherman SM, Guillery RW. 1996. Functional organization of thalamocortical relays. J. Neurophysiol. 76:1367–95
    [Google Scholar]
  157. Sherman SM, Guillery RW. 1998. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators.”. PNAS 95:7121–26
    [Google Scholar]
  158. Sherman SM, Guillery RW. 2011. Distinct functions for direct and transthalamic corticocortical connections. J. Neurophysiol. 106:1068–77
    [Google Scholar]
  159. Shimaoka D, Harris KD, Carandini M 2018. Effects of arousal on mouse sensory cortex depend on modality. Cell Rep 22:3160–67
    [Google Scholar]
  160. Sieben K, Röder B, Hanganu-Opatz IL 2013. Oscillatory entrainment of primary somatosensory cortex encodes visual control of tactile processing. J. Neurosci. 33:5736–49
    [Google Scholar]
  161. Simpson J. 1984. The accessory optic system. Annu. Rev. Neurosci. 7:13–41
    [Google Scholar]
  162. Sinnamon H, Galer B. 1984. Head movements elicited by electrical stimulation of the anteromedial cortex of the rat. Physiol. Behav. 33:185–90
    [Google Scholar]
  163. Song Y-H, Kim J-H, Jeong H-W, Choi I, Jeong D et al. 2017. A neural circuit for auditory dominance over visual perception. Neuron 93:940–54.e6
    [Google Scholar]
  164. Spiro T, Massopust LC, Young PA 1980. Efferent projections of the lateral dorsal nucleus in the rat. Exp. Neurol. 68:171–84
    [Google Scholar]
  165. Stehberg J, Dang PT, Frostig RD 2014. Unimodal primary sensory cortices are directly connected by long-range horizontal projections in the rat sensory cortex. Front. Neuroanat. 8:93
    [Google Scholar]
  166. Sugar J, Witter MP, van Strien N, Cappaert N 2011. The retrosplenial cortex: intrinsic connectivity and connections with the (para)hippocampal region in the rat—an interactive connectome. Front. Neuroinform. 5:7
    [Google Scholar]
  167. Sun LO, Brady CM, Cahill H, Al-Khindi T, Sakuta H et al. 2015. Functional assembly of accessory optic system circuitry critical for compensatory eye movements. Neuron 86:971–84
    [Google Scholar]
  168. Swadlow HA. 1983. Efferent systems of primary visual cortex: a review of structure and function. Brain Res. Rev. 6:1–24
    [Google Scholar]
  169. Tang J, Ardila Jimenez SC, Chakraborty S, Schultz SR 2016. Visual receptive field properties of neurons in the mouse lateral geniculate nucleus. PLOS ONE 11:e0146017
    [Google Scholar]
  170. Taube JS. 2007. The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci. 30:181–207
    [Google Scholar]
  171. Tehovnik EJ, Yeomans JS. 1987. Circling elicited from the anteromedial cortex and medial pons: refractory periods and summation. Brain Res 407:240–52
    [Google Scholar]
  172. Teuber H-L. 1970. Subcortical vision: a prologue. Brain Behav. Evol. 3:7–15
    [Google Scholar]
  173. Thompson AD, Picard N, Min L, Fagiolini M, Chen C 2016. Cortical feedback regulates feedforward retinogeniculate refinement. Neuron 91:1021–33
    [Google Scholar]
  174. Tohmi M, Meguro R, Tsukano H, Hishida R, Shibuki K 2014. The extrageniculate visual pathway generates distinct response properties in the higher visual areas of mice. Curr. Biol. 24:587–97
    [Google Scholar]
  175. Tsukano H, Horie M, Ohga S, Takahashi K, Kubota Y et al. 2017. Reconsidering tonotopic maps in the auditory cortex and lemniscal auditory thalamus in mice. Front. Neural Circuits 11:14
    [Google Scholar]
  176. van Alphen B, Winkelman BHJ, Frens MA 2010. Three-dimensional optokinetic eye movements in the C57BL/6J mouse. Investig. Ophthalmol. Vis. Sci. 51:623–30
    [Google Scholar]
  177. van der Togt C, van der Want J, Schmidt M 1993. Segregation of direction selective neurons and synaptic organization of inhibitory intranuclear connections in the medial terminal nucleus of the rat: an electrophysiological and immunoelectron microscopical study. J. Comp. Neurol. 338:175–92
    [Google Scholar]
  178. Varela C. 2014. Thalamic neuromodulation and its implications for executive networks. Front. Neural Circuits 8:69
    [Google Scholar]
  179. Vélez-Fort M, Bracey EF, Keshavarzi S, Rousseau CV, Cossell L et al. 2018. A circuit for integration of head- and visual-motion signals in layer 6 of mouse primary visual cortex. Neuron 98:179–91.e6
    [Google Scholar]
  180. Vélez-Fort M, Rousseau CV, Niedworok CJ, Wickersham IR, Rancz EA et al. 2014. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing. Neuron 83:1431–43
    [Google Scholar]
  181. Vertes RP, Linley SB, Hoover WB 2010. Pattern of distribution of serotonergic fibers to the thalamus of the rat. Brain Struct. Funct. 215:1–28
    [Google Scholar]
  182. Vinck M, Batista-Brito R, Knoblich U, Cardin JA 2015. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86:740–54
    [Google Scholar]
  183. Walker EY, Sinz FH, Froudarakis E, Fahey PG, Muhammad T et al. 2018. Inception in visual cortex: In vivo-silico loops reveal most exciting images. bioRxiv 506956
  184. Wallace DJ, Greenberg DS, Sawinski J, Rulla S, Notaro G, Kerr JND 2013. Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498:65–69
    [Google Scholar]
  185. Wang L, Krauzlis RJ. 2018. Visual selective attention in mice. Curr. Biol. 28:676–85.e4
    [Google Scholar]
  186. Wang Q, Sporns O, Burkhalter A 2012. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. J. Neurosci. 32:4386–99
    [Google Scholar]
  187. Ward RD, Winiger V, Kandel ER, Balsam PD, Simpson EH 2015. Orbitofrontal cortex mediates the differential impact of signaled-reward probability on discrimination accuracy. Front. Neurosci. 9:230
    [Google Scholar]
  188. Waterhouse BD, Ausim Azizi S, Burne RA, Woodward DJ 1990. Modulation of rat cortical area 17 neuronal responses to moving visual stimuli during norepinephrine and serotonin microiontophoresis. Brain Res 514:276–92
    [Google Scholar]
  189. Wei P, Liu N, Zhang Z, Liu X, Tang Y et al. 2015. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6:6756
    [Google Scholar]
  190. Wise RA, Rompre PP. 1989. Brain dopamine and reward. Annu. Rev. Psychol. 40:191–225
    [Google Scholar]
  191. Yamawaki N, Radulovic J, Shepherd GMG 2016. A corticocortical circuit directly links retrosplenial cortex to M2 in the mouse. J. Neurosci. 36:9365–74
    [Google Scholar]
  192. Yeomans JS, Frankland PW. 1995. The acoustic startle reflex: neurons and connections. Brain Res. Rev. 21:301–14
    [Google Scholar]
  193. Yeomans JS, Tehovnik EJ. 1988. Turning responses evoked by stimulation of visuomotor pathways. Brain Res. Rev. 13:235–59
    [Google Scholar]
  194. Yilmaz M, Meister M. 2013. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23:2011–15
    [Google Scholar]
  195. Yonehara K, Ishikane H, Sakuta H, Shintani T, Nakamura-Yonehara K et al. 2009. Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion. PLOS ONE 4:e4320
    [Google Scholar]
  196. Young MJ, Lund RD. 1994. The anatomical substrates subserving the pupillary light reflex in rats: origin of the consensual pupillary response. Neuroscience 62:481–96
    [Google Scholar]
  197. Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR et al. 2015. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb. Cortex 25:118–37
    [Google Scholar]
  198. Zhang S, Xu M, Kamigaki T, Do JPH, Chang W-C et al. 2014. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345:660–65
    [Google Scholar]
  199. Zhao X, Liu M, Cang J 2014. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron 84:202–13
    [Google Scholar]
  200. Zhou H, Schafer RJ, Desimone R 2016. Pulvinar-cortex interactions in vision and attention. Neuron 89:209–20
    [Google Scholar]
  201. Zhou N, Maire P, Masterson S, Bickford M 2017a. The mouse pulvinar nucleus: organization of the tectorecipient zones. Vis. Neurosci. 34:E011
    [Google Scholar]
  202. Zhou N, Masterson SP, Damron JK, Guido W, Bickford ME 2017b. The mouse pulvinar nucleus links the lateral extrastriate cortex, striatum, and amygdala. J. Neurosci. 38:347–62
    [Google Scholar]
  203. Zhou W, King WM. 1998. Premotor commands encode monocular eye movements. Nature 393:692–95
    [Google Scholar]
  204. Zhuang J, Ng L, Williams D, Valley M, Li Y et al. 2017. An extended retinotopic map of mouse cortex. eLife 6:e18372
    [Google Scholar]
  205. Zimmermann KS, Yamin JA, Rainnie DG, Ressler KJ, Gourley SL 2017. Connections of the mouse orbitofrontal cortex and regulation of goal-directed action selection by brain-derived neurotrophic factor. Biol. Psychiatry 81:366–77
    [Google Scholar]
  206. Zingg B, Chou X-L, Zhang Z-G, Mesik L, Liang F et al. 2017. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93:33–47
    [Google Scholar]
  207. Zipser K, Lamme VAF, Schiller PH 1996. Contextual modulation in primary visual cortex. J. Neurosci. 16:7376–89
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091517-034407
Loading
/content/journals/10.1146/annurev-vision-091517-034407
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error