1932

Abstract

The discovery of RNA interference (RNAi) is among the most significant biomedical breakthroughs in recent history. Multiple classes of small RNA, including small-interfering RNA (siRNA), micro-RNA (miRNA), and piwi-interacting RNA (piRNA), play important roles in many fundamental biological and disease processes. Collective studies in multiple organisms, including plants, , , and mammals indicate that these pathways are highly conserved throughout evolution. Thus, scientists across disciplines have found novel pathways to unravel, new insights in probing pathology, and nascent technologies to develop. The field of RNAi also provides a clear framework for understanding fundamental principles of biochemistry. The current review highlights elegant, reason-based experimentation in discovering RNA-directed biological phenomena and the importance of robust assay development in translating these observations into mechanistic understanding. This biochemical template also provides a conceptual framework for overcoming emerging challenges in the field and for understanding an expanding small RNA world.

Keyword(s): assaydsRNAmiRNApiRNAsiRNA
Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.052208.151733
2010-07-07
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/79/1/annurev.biochem.052208.151733.html?itemId=/content/journals/10.1146/annurev.biochem.052208.151733&mimeType=html&fmt=ahah

Literature Cited

  1. Tolia NH, Joshua-Tor L. 1.  2007. Slicer and the argonautes. Nat. Chem. Biol. 3:36–43 [Google Scholar]
  2. Carthew RW, Sontheimer EJ. 2.  2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–55 [Google Scholar]
  3. Siomi H, Siomi MC. 3.  2009. On the road to reading the RNA-interference code. Nature 457:396–404 [Google Scholar]
  4. Ghildiyal M, Zamore PD. 4.  2009. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10:94–108 [Google Scholar]
  5. Mattick JS. 5.  2009. The genetic signatures of noncoding RNAs. PLoS Genet. 5:e1000459 [Google Scholar]
  6. van Rij RP, Berezikov E. 6.  2009. Small RNAs and the control of transposons and viruses in Drosophila. Trends Microbiol. 17:163–71 [Google Scholar]
  7. Malone CD, Hannon GJ. 7.  2009. Small RNAs as guardians of the genome. Cell 136:656–68 [Google Scholar]
  8. Kim VN, Han J, Siomi MC. 8.  2009. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10:126–39 [Google Scholar]
  9. Okamura K, Lai EC. 9.  2008. Endogenous small interfering RNAs in animals. Nat. Rev. Mol. Cell Biol. 9:673–78 [Google Scholar]
  10. Napoli C, Lemieux C, Jorgensen R. 10.  1990. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–89 [Google Scholar]
  11. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. 11.  1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–11 [Google Scholar]
  12. Hamilton AJ, Baulcombe DC. 12.  1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–52 [Google Scholar]
  13. Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA. 13.  1999. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13:3191–97 [Google Scholar]
  14. Zamore PD, Tuschl T, Sharp PA, Bartel DP. 14.  2000. RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33 [Google Scholar]
  15. Hammond SM, Bernstein E, Beach D, Hannon GJ. 15.  2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–96 [Google Scholar]
  16. Elbashir SM, Lendeckel W, Tuschl T. 16.  2001. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15:188–200 [Google Scholar]
  17. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. 17.  2001. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20:6877–88 [Google Scholar]
  18. Schwarz DS, Hutvagner G, Haley B, Zamore PD. 18.  2002. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10:537–48 [Google Scholar]
  19. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. 19.  2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–98 [Google Scholar]
  20. Ambros V, Horvitz HR. 20.  1987. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev. 1:398–414 [Google Scholar]
  21. Lee RC, Feinbaum RL, Ambros V. 21.  1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–54 [Google Scholar]
  22. Wightman B, Ha I, Ruvkun G. 22.  1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–62 [Google Scholar]
  23. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC. 23.  et al. 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–6 [Google Scholar]
  24. Olsen PH, Ambros V. 24.  1999. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216:671–80 [Google Scholar]
  25. Bass BL. 25.  2000. Double-stranded RNA as a template for gene silencing. Cell 101:235–38 [Google Scholar]
  26. Bernstein E, Caudy AA, Hammond SM, Hannon GJ. 26.  2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–66 [Google Scholar]
  27. Liu Q, Rand TA, Kalidas S, Du F, Kim HE. 27.  et al. 2003. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301:1921–25 [Google Scholar]
  28. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI. 28.  et al. 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89 [Google Scholar]
  29. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. 29.  2001. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–38 [Google Scholar]
  30. Lee YS, Nakahara K, Pham JW, Kim K, He Z. 30.  et al. 2004. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81 [Google Scholar]
  31. Jiang F, Ye X, Liu X, Fincher L, McKearin D, Liu Q. 31.  2005. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 19:1674–79 [Google Scholar]
  32. Billy E, Brondani V, Zhang H, Muller U, Filipowicz W. 32.  2001. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl. Acad. Sci. USA 98:14428–33 [Google Scholar]
  33. Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Radmark O. 33.  2002. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 21:5864–74 [Google Scholar]
  34. Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W. 34.  2004. Single processing center models for human Dicer and bacterial RNase III. Cell 118:57–68 [Google Scholar]
  35. Blaszczyk J, Tropea JE, Bubunenko M, Routzahn KM, Waugh DS. 35.  et al. 2001. Crystallographic and modeling studies of RNase III suggest a mechanism for double-stranded RNA cleavage. Structure 9:1225–36 [Google Scholar]
  36. Ye X, Paroo Z, Liu Q. 36.  2007. Functional anatomy of the Drosophila microRNA-generating enzyme. J. Biol. Chem. 282:28373–78 [Google Scholar]
  37. Macrae IJ, Zhou K, Li F, Repic A, Brooks AN. 37.  et al. 2006. Structural basis for double-stranded RNA processing by Dicer. Science 311:195–98 [Google Scholar]
  38. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ. 38.  2001. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–50 [Google Scholar]
  39. Rand TA, Ginalski K, Grishin NV, Wang X. 39.  2004. Biochemical identification of Argonaute 2 as the sole protein required for RNA-induced silencing complex activity. Proc. Natl. Acad. Sci. USA 101:14385–89 [Google Scholar]
  40. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. 40.  2002. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–74 [Google Scholar]
  41. Tabara H, Sarkissian M, Kelly WG, Fleenor J, Grishok A. 41.  et al. 1999. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:123–32 [Google Scholar]
  42. Cogoni C, Macino G. 42.  1997. Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc. Natl. Acad. Sci. USA 94:10233–38 [Google Scholar]
  43. Fagard M, Boutet S, Morel JB, Bellini C, Vaucheret H. 43.  2000. AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl. Acad. Sci. USA 97:11650–54 [Google Scholar]
  44. Schwarz DS, Tomari Y, Zamore PD. 44.  2004. The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr. Biol. 14:787–91 [Google Scholar]
  45. Martinez J, Tuschl T. 45.  2004. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18:975–80 [Google Scholar]
  46. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM. 46.  et al. 2004. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–41 [Google Scholar]
  47. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T. 47.  2004. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15:185–97 [Google Scholar]
  48. Song JJ, Smith SK, Hannon GJ, Joshua-Tor L. 48.  2004. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–37 [Google Scholar]
  49. Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J. 49.  et al. 2005. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol. 12:340–49 [Google Scholar]
  50. Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC. 50.  2005. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19:2837–48 [Google Scholar]
  51. Okamura K, Ishizuka A, Siomi H, Siomi MC. 51.  2004. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18:1655–66 [Google Scholar]
  52. Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ. 52.  2008. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456:921–26 [Google Scholar]
  53. Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ. 53.  2008. Structure of the guide-strand-containing argonaute silencing complex. Nature 456:209–13 [Google Scholar]
  54. Fabian MR, Sonenberg N, Filipowicz W. 53a.  2010. Regulation of mRNA translation and stability by micro-RNAs. Annu. Rev. Biochem. 79:351–79 [Google Scholar]
  55. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J. 54.  et al. 2005. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–63 [Google Scholar]
  56. Schmitter D, Filkowski J, Sewer A, Pillai RS, Oakeley EJ. 55.  et al. 2006. Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res. 34:4801–15 [Google Scholar]
  57. Yekta S, Shih IH, Bartel DP. 56.  2004. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–96 [Google Scholar]
  58. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. 57.  2008. Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63 [Google Scholar]
  59. Paroo Z, Pertsemlidis A. 58.  2009. microRNAs mature with help from cancer biology. Genome Biol. 10:310 [Google Scholar]
  60. Thermann R, Hentze MW. 59.  2007. Drosophila miR2 induces pseudopolysomes and inhibits translation initiation. Nature 447:875–78 [Google Scholar]
  61. Wakiyama M, Takimoto K, Ohara O, Yokoyama S. 60.  2007. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 21:1857–62 [Google Scholar]
  62. Liu X, Jiang F, Kalidas S, Smith D, Liu Q. 61.  2006. Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA 12:1514–20 [Google Scholar]
  63. Pham JW, Pellino JL, Lee YS, Carthew RW, Sontheimer EJ. 62.  2004. A Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117:83–94 [Google Scholar]
  64. Tomari Y, Du T, Haley B, Schwarz DS, Bennett R. 63.  et al. 2004. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116:831–41 [Google Scholar]
  65. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD. 64.  2003. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208 [Google Scholar]
  66. Khvorova A, Reynolds A, Jayasena SD. 65.  2003. Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–16 [Google Scholar]
  67. Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD. 66.  2004. A protein sensor for siRNA asymmetry. Science 306:1377–80 [Google Scholar]
  68. Nykanen A, Haley B, Zamore PD. 67.  2001. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–21 [Google Scholar]
  69. Meister G, Landthaler M, Peters L, Chen PY, Urlaub H. 68.  et al. 2005. Identification of novel argonaute-associated proteins. Curr. Biol. 15:2149–55 [Google Scholar]
  70. Robb GB, Rana TM. 69.  2007. RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol. Cell 26:523–37 [Google Scholar]
  71. Rand TA, Petersen S, Du F, Wang X. 70.  2005. Argonaute2 cleaves the antiguide strand of siRNA during RISC activation. Cell 123:621–29 [Google Scholar]
  72. Liu Y, Ye X, Jiang F, Liang C, Chen D. 71.  et al. 2009. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation. Science 325:750–53 [Google Scholar]
  73. Kim K, Lee YS, Carthew RW. 72.  2007. Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes. RNA 13:22–29 [Google Scholar]
  74. Maiti M, Lee HC, Liu Y. 73.  2007. QIP, a putative exonuclease, interacts with the Neurospora Argonaute protein and facilitates conversion of duplex siRNA into single strands. Genes Dev. 21:590–600 [Google Scholar]
  75. Paroo Z, Liu Q, Wang X. 74.  2007. Biochemical mechanisms of the RNA-induced silencing complex. Cell Res. 17:187–94 [Google Scholar]
  76. Gregory RI, Chendrimada TP, Cooch N, Shiekhattar R. 75.  2005. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123:631–40 [Google Scholar]
  77. Maniataki E, Mourelatos Z. 76.  2005. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 19:2979–90 [Google Scholar]
  78. MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA. 77.  2008. In vitro reconstitution of the human RISC-loading complex. Proc. Natl. Acad. Sci. USA 105:512–17 [Google Scholar]
  79. Tan GS, Garchow BG, Liu X, Yeung J, Morris JP 4th. 77a.  et al. 2009. Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Res. 7:7533–45 [Google Scholar]
  80. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC. 78.  et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921 [Google Scholar]
  81. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ. 79.  et al. 2001. The sequence of the human genome. Science 291:1304–51 [Google Scholar]
  82. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. 80.  2003. Prediction of mammalian microRNA targets. Cell 115:787–98 [Google Scholar]
  83. Lai EC. 81.  2005. miRNAs: whys and wherefores of miRNA-mediated regulation. Curr. Biol. 15:R458–60 [Google Scholar]
  84. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. 82.  2002. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21:4663–70 [Google Scholar]
  85. Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A. 83.  2007. The expanding RNA polymerase III transcriptome. Trends Genet. 23:614–22 [Google Scholar]
  86. Cai X, Hagedorn CH, Cullen BR. 84.  2004. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10:1957–66 [Google Scholar]
  87. Lee Y, Kim M, Han J, Yeom KH, Lee S. 85.  et al. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–60 [Google Scholar]
  88. Lee Y, Ahn C, Han J, Choi H, Kim J. 86.  et al. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–19 [Google Scholar]
  89. Wu H, Xu H, Miraglia LJ, Crooke ST. 87.  2000. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J. Biol. Chem. 275:36957–65 [Google Scholar]
  90. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC. 88.  2007. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130:89–100 [Google Scholar]
  91. Ruby JG, Jan CH, Bartel DP. 89.  2007. Intronic microRNA precursors that bypass Drosha processing. Nature 448:83–86 [Google Scholar]
  92. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC. 90.  2007. Mammalian mirtron genes. Mol. Cell 28:328–36 [Google Scholar]
  93. Gwizdek C, Ossareh-Nazari B, Brownawell AM, Doglio A, Bertrand E. 91.  et al. 2003. Exportin-5 mediates nuclear export of minihelix-containing RNAs. J. Biol. Chem. 278:5505–8 [Google Scholar]
  94. Yi R, Qin Y, Macara IG, Cullen BR. 92.  2003. Exportin-5 mediates the nuclear export of premicroRNAs and short hairpin RNAs. Genes Dev. 17:3011–16 [Google Scholar]
  95. Yi R, Doehle BP, Qin Y, Macara IG, Cullen BR. 93.  2005. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11:220–26 [Google Scholar]
  96. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U. 94.  2004. Nuclear export of microRNA precursors. Science 303:95–98 [Google Scholar]
  97. Bohnsack MT, Czaplinski K, Gorlich D. 95.  2004. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–91 [Google Scholar]
  98. Tabara H, Yigit E, Siomi H, Mello CC. 96.  2002. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109:861–71 [Google Scholar]
  99. Förstemann K, Tomari Y, Du T, Vagin VV, Denli AM. 97.  et al. 2005. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3:e236 [Google Scholar]
  100. Saito K, Ishizuka A, Siomi H, Siomi MC. 98.  2005. Processing of premicroRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol. 3:e235 [Google Scholar]
  101. Liu X, Park JK, Jiang F, Liu Y, McKearin D, Liu Q. 99.  2007. Dicer-1, but not Loquacious, is critical for assembly of miRNA-induced silencing complexes. RNA 13:2324–29 [Google Scholar]
  102. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N. 100.  et al. 2005. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–44 [Google Scholar]
  103. Haase AD, Jaskiewicz L, Zhang H, Laine S, Sack R. 101.  et al. 2005. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6:961–67 [Google Scholar]
  104. Paroo Z, Ye X, Chen S, Liu Q. 101a.  2009. Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 139:112–22 [Google Scholar]
  105. Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. 102.  2006. The role of PACT in the RNA silencing pathway. EMBO J. 25:522–32 [Google Scholar]
  106. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B. 103.  et al. 2003. A protein interaction map of Drosophila melanogaster. Science 302:1727–36 [Google Scholar]
  107. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. 104.  2004. Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–35 [Google Scholar]
  108. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN. 105.  2004. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18:3016–27 [Google Scholar]
  109. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B. 106.  et al. 2004. The Microprocessor complex mediates the genesis of microRNAs. Nature 432:235–40 [Google Scholar]
  110. Landthaler M, Yalcin A, Tuschl T. 107.  2004. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14:2162–7 [Google Scholar]
  111. Han J, Lee Y, Yeom KH, Nam JW, Heo I. 108.  et al. 2006. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125:887–901 [Google Scholar]
  112. Han J, Pedersen JS, Kwon SC, Belair CD, Kim YK. 109.  et al. 2009. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136:75–84 [Google Scholar]
  113. Ma E, MacRae IJ, Kirsch JF, Doudna JA. 110.  2008. Autoinhibition of human Dicer by its internal helicase domain. J. Mol. Biol. 380:237–43 [Google Scholar]
  114. Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H. 110a.  et al. 2009. A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 41:365–70 [Google Scholar]
  115. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J. 111.  et al. 2005. MicroRNA expression profiles classify human cancers. Nature 435:834–38 [Google Scholar]
  116. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T. 112.  2007. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat. Genet. 39:673–77 [Google Scholar]
  117. Pak J, Fire A. 113.  2007. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315:241–44 [Google Scholar]
  118. Yigit E, Batista PJ, Bei Y, Pang KM, Chen CC. 114.  et al. 2006. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127:747–57 [Google Scholar]
  119. Aoki K, Moriguchi H, Yoshioka T, Okawa K, Tabara H. 115.  2007. In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. EMBO J. 26:5007–19 [Google Scholar]
  120. Moazed D. 116.  2009. Small RNAs in transcriptional gene silencing and genome defense. Nature 457:413–20 [Google Scholar]
  121. Lee HC, Chang SS, Choudhary S, Aalto AP, Maiti M. 117.  et al. 2009. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature 459:274–77 [Google Scholar]
  122. Zhou R, Czech B, Brennecke J, Sachidanandam R, Wohlschlegel JA. 118.  et al. 2009. Processing of Drosophila endo-siRNAs depends on a specific Loquacious isoform. RNA 15:1886–95 [Google Scholar]
  123. Hartig JV, Esslinger S, Böttcher R, Saito K, Förstemann K. 119.  2009. Endo-siRNAs depend on a new isoform of loquacious and target artificially introduced, high-copy sequences. EMBO J. 28:2932–44 [Google Scholar]
  124. Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D. 120.  et al. 2003. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5:337–50 [Google Scholar]
  125. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M. 121.  et al. 2007. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–103 [Google Scholar]
  126. Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y. 122.  et al. 2007. A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315:1587–90 [Google Scholar]
  127. Li C, Vagin VV, Lee S, Xu J, Ma S. 123.  et al. 2009. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 137:509–21 [Google Scholar]
  128. Simmer F, Tijsterman M, Parrish S, Koushika SP, Nonet ML. 124.  et al. 2002. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol. 12:1317–19 [Google Scholar]
  129. Kennedy S, Wang D, Ruvkun G. 125.  2004. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427:645–49 [Google Scholar]
  130. Fischer SE, Butler MD, Pan Q, Ruvkun G. 126.  2008. Trans-splicing in C. elegans generates the negative RNAi regulator ERI-6/7. Nature 455:491–96 [Google Scholar]
  131. Hwang HW, Wentzel EA, Mendell JT. 127.  2009. Cell-cell contact globally activates microRNA biogenesis. Proc. Natl. Acad. Sci. USA 106:7016–21 [Google Scholar]
  132. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. 128.  2006. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20:2202–7 [Google Scholar]
  133. Obernosterer G, Leuschner PJ, Alenius M, Martinez J. 129.  2006. Post-transcriptional regulation of microRNA expression. RNA 12:1161–67 [Google Scholar]
  134. Lee EJ, Baek M, Gusev Y, Brackett DJ, Nuovo GJ, Schmittgen TD. 130.  2008. Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. RNA 14:35–42 [Google Scholar]
  135. Viswanathan SR, Daley GQ, Gregory RI. 131.  2008. Selective blockade of microRNA processing by Lin28. Science 320:97–100 [Google Scholar]
  136. Newman MA, Thomson JM, Hammond SM. 132.  2008. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14:1539–49 [Google Scholar]
  137. Piskounova E, Viswanathan SR, Janas M, LaPierre RJ, Daley GQ. 133.  et al. 2008. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283:21310–14 [Google Scholar]
  138. Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl EE. 134.  et al. 2008. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 10:987–93 [Google Scholar]
  139. Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. 135.  2008. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32:276–84 [Google Scholar]
  140. Heo I, Joo C, Kim YK, Ha M, Yoon MJ. 135a.  et al. 2009. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138:696–708 [Google Scholar]
  141. Chang TC, Zeitels LR, Hwang HW, Chivukula RR, Wentzel EA. 136.  et al. 2009. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc. Natl. Acad. Sci. USA 106:3384–89 [Google Scholar]
  142. Guil S, Cáceres JF. 137.  2007. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14:591–96 [Google Scholar]
  143. Davis BN, Hilyard AC, Lagna G, Hata A. 138.  2008. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454:56–61 [Google Scholar]
  144. Trabucchi M, Briata P, Garcia-Mayoral M, Haase AD, Filipowicz W. 139.  et al. 2009. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459:1010–14 [Google Scholar]
  145. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. 140.  2006. Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb. Symp. Quant. Biol. 71:513–21 [Google Scholar]
  146. Kedde M, Strasser MJ, Boldajipour B, Oude Vrielink JA, Slanchev K. 141.  et al. 2007. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131:1273–86 [Google Scholar]
  147. Weinmann L, Hock J, Ivacevic T, Ohrt T, Mutze J. 142.  et al. 2009. Importin 8 is a gene silencing factor that targets Argonaute proteins to distinct mRNAs. Cell 136:496–507 [Google Scholar]
  148. Qi HH, Ongusaha PP, Myllyharju J, Cheng D, Pakkanen O. 143.  et al. 2008. Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature 455:421–24 [Google Scholar]
  149. Kirino Y, Kim N, de Planell-Saguer M, Khandros E, Chiorean S. 144.  et al. 2009. Arginine methylation of Piwi proteins catalysed by dPRMT5 is required for Ago3 and Aub stability. Nat. Cell Biol. 11:652–58 [Google Scholar]
  150. Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X. 145.  et al. 2009. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev. 23:1749–62 [Google Scholar]
  151. Reuter M, Chuma S, Tanaka T, Franz T, Stark A, Pillai RS. 146.  2009. Loss of the Mili-interacting Tudor domain–containing protein-1 activates transposons and alters the Mili-associated small RNA profile. Nat. Struct. Mol. Biol. 16:639–46 [Google Scholar]
  152. Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ. 147.  et al. 2009. Raf kinase inhibitory protein suppresses a metastasis signaling cascade involving LIN28 and let-7. EMBO J. 28:347–58 [Google Scholar]
  153. Zeng Y, Sankala H, Zhang X, Graves PR. 148.  2008. Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem. J. 413:429–36 [Google Scholar]
  154. Vasudevan S, Tong Y, Steitz JA. 149.  2007. Switching from repression to activation: MicroRNAs can up-regulate translation. Science 318:1931–34 [Google Scholar]
/content/journals/10.1146/annurev.biochem.052208.151733
Loading
/content/journals/10.1146/annurev.biochem.052208.151733
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error