Thromb Haemost 2013; 110(04): 661-669
DOI: 10.1160/TH13-01-0073
Theme Issue Article
Schattauer GmbH

Adipose tissue angiogenesis in obesity

Amal Y. Lemoine
1   Service de diabétologie, Hôtel Dieu de Paris, APHP and Université Paris Descartes, Paris France
,
Séverine Ledoux
2   Services des explorations fonctionnelles, Hôpital Louis Mourier, APHP and Université Paris Denis Diderot, Paris, France
,
Etienne Larger
1   Service de diabétologie, Hôtel Dieu de Paris, APHP and Université Paris Descartes, Paris France
› Author Affiliations
Further Information

Publication History

Received: 29 January 2013

Accepted after minor revision: 25 March 2013

Publication Date:
01 December 2017 (online)

summary

Adipose tissue is the most plastic tissue in all multicellular organisms, being constantly remodelled along with weight gain and weight loss. Expansion of adipose tissue must be accompanied by that of its vascularisation, through processes of angiogenesis, whereas weight loss is associated with the regression of blood vessels. Adipose tissue is thus among the tissues that have the highest angiogenic capacities. These changes of the vascular bed occur through close interactions of adipocytes with blood vessels, and involve several angiogenic factors. This review presents studies that are the basis of our understanding of the regulation of adipose tissue angiogenesis. The growth factors that are involved in the processes of angiogenesis and vascular regression are discussed with a focus on their potential modulation for the treatment of obesity. The hypothesis that inflammation of adipose tissue and insulin resistance could be related to altered angiogenesis in adipose tissue is presented, as well as the beneficial or deleterious effect of inhibition of adipose tissue angiogenesis on metabolic diseases.

 
  • References

  • 1 Olshansky SJ, Passaro DJ, Hershow RC. et al. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med 2005; 352: 1138-1145.
  • 2 WHO. Obesity and overweight fact sheet. http://wwwwhoint/mediacentre/factsheets/fs311/en/ 2008 .
  • 3 Cao R, Brakenhielm E, Wahlestedt C. et al. Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc Natl Acad Sci USA 2001; 98: 6390-6395.
  • 4 Sierra-Honigmann MR, Nath AK, Murakami C. et al. Biological action of leptin as an angiogenic factor. Science 1998; 281: 1683-1686.
  • 5 Ouchi N, Kobayashi H, Kihara S. et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem 2004; 279: 1304-1309.
  • 6 Tang W, Zeve D, Suh JM. et al. White fat progenitor cells reside in the adipose vasculature. Science 2008; 322: 583-586.
  • 7 Powell K. Obesity: the two faces of fat. Nature 2007; 447: 525-527.
  • 8 Hausman GJ, Richardson RL. Adipose tissue angiogenesis. J Anim Sci 2004; 82: 925-934.
  • 9 Mandrup S, Loftus TM, MacDougald OA. et al. Obese gene expression at in vivo levels by fat pads derived from s.c. implanted 3T3-F442A preadipocytes. Proc Natl Acad Sci USA 1997; 94: 4300-4305.
  • 10 Vineberg AM, Shanks J, Pifarre R. et al. Myocardial Revascularization by Omental Graft without Pedicle: Experimental Background and Report on 25 Cases Followed 6 to 16 Months. J Thorac Cardiovasc Surg 1965; 49: 103-129.
  • 11 Beck CS. The Development of a New Blood Supply to the Heart by Operation. Ann Surg 1935; 102: 801-813.
  • 12 Cao Y. Angiogenesis modulates adipogenesis and obesity. J Clin Invest 2007; 117: 2362-2368.
  • 13 Castellot Jr JJ, Karnovsky MJ, Spiegelman BM. Potent stimulation of vascular endothelial cell growth by differentiated 3T3 adipocytes. Proc Natl Acad Sci USA 1980; 77: 6007-6011.
  • 14 Goldsmith HS, Griffith AL, Kupferman A. et al. Lipid angiogenic factor from omentum. J Am Med Assoc 1984; 252: 2034-2036.
  • 15 Ledoux S, Queguiner I, Msika S. et al. Angiogenesis associated with visceral and subcutaneous adipose tissue in severe human obesity. Diabetes 2008; 57: 3247-3257.
  • 16 Silverman KJ, Lund DP, Zetter BR. et al. Angiogenic activity of adipose tissue. Biochem Biophys Res Commun 1988; 153: 347-352.
  • 17 Xue Y, Petrovic N, Cao R. et al. Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab 2009; 9: 99-109.
  • 18 Voros G, Maquoi E, Demeulemeester D. et al. Modulation of angiogenesis during adipose tissue development in murine models of obesity. Endocrinology 2005; 146: 4545-4554.
  • 19 Cho CH, Koh YJ, Han J. et al. Angiogenic role of LYVE-1-positive macrophages in adipose tissue. Circ Res 2007; 100: e47-e57.
  • 20 Zhang QX, Magovern CJ, Mack CA. et al. Vascular endothelial growth factor is the major angiogenic factor in omentum: mechanism of the omentum-mediated angiogenesis. J Surg Res 1997; 67: 147-154.
  • 21 Tam J, Duda DG, Perentes JY. et al. Blockade of VEGFR2 and not VEGFR1 can limit diet-induced fat tissue expansion: role of local versus bone marrow-derived endothelial cells. PLoS One 2009; 4: e4974.
  • 22 Olofsson B, Korpelainen E, Pepper MS. et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci USA 1998; 95: 11709-11714.
  • 23 Karkkainen MJ, Haiko P, Sainio K. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004; 5: 74-80.
  • 24 Stacker SA, Caesar C, Baldwin ME. et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7: 186-191.
  • 25 Carmeliet P, Moons L, Luttun A. et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001; 7: 575-583.
  • 26 Lijnen HR, Christiaens V, Scroyen I. et al. Impaired adipose tissue development in mice with inactivation of placental growth factor function. Diabetes 2006; 55: 2698-2704.
  • 27 Bell LN, Ward JL, Degawa-Yamauchi M. et al. Adipose tissue production of hepatocyte growth factor contributes to elevated serum HGF in obesity. Am J Physiol Endocrinol Metab 2006; 291: E843-E848.
  • 28 Saiki A, Watanabe F, Murano T. et al. Hepatocyte growth factor secreted by cultured adipocytes promotes tube formation of vascular endothelial cells in vitro. Int J Obes 2006; 30: 1676-1684.
  • 29 Cohen B, Barkan D, Levy Y. et al. Leptin induces angiopoietin-2 expression in adipose tissues. J Biol Chem 2001; 276: 7697-7700.
  • 30 Ribatti D, Conconi MT, Nussdorfer GG. Nonclassic endogenous novel [corrected] regulators of angiogenesis. Pharmacol Rev 2007; 59: 185-205.
  • 31 Chavez RJ, Haney RM, Cuadra RH. et al. Upregulation of thrombospondin-1 expression by leptin in vascular smooth muscle cells via JAK2- and MAPK-dependent pathways. Am J Physiol Cell Physiol 2012; 303: C179-C191.
  • 32 Ekstrand AJ, Cao R, Bjorndahl M. et al. Deletion of neuropeptide Y (NPY) 2 receptor in mice results in blockage of NPY-induced angiogenesis and delayed wound healing. Proc Natl Acad Sci USA 2003; 100: 6033-6038.
  • 33 Jamaluddin MS, Weakley SM, Yao Q. et al. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol 2012; 165: 622-632.
  • 34 Cancello R, Henegar C, Viguerie N. et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005; 54: 2277-2286.
  • 35 Maisonpierre PC, Suri C, Jones PF. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55-60.
  • 36 Neels JG, Thinnes T, Loskutoff DJ. Angiogenesis in an in vivo model of adipose tissue development. Faseb J 2004; 18: 983-985.
  • 37 Xue Y, Religa P, Cao R. et al. Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome. Proc Natl Acad Sci USA 2008; 105: 18513-1818.
  • 38 Samad F, Pandey M, Loskutoff DJ. Tissue factor gene expression in the adipose tissues of obese mice. Proc Natl Acad Sci USA 1998; 95: 7591-7596.
  • 39 Lebrin F, Deckers M, Bertolino P. et al. TGF-beta receptor function in the endothelium. Cardiovasc Res 2005; 65: 599-608.
  • 40 Brakenhielm E, Veitonmaki N, Cao R. et al. Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci USA 2004; 101: 2476-2481.
  • 41 Maeda N, Shimomura I, Kishida K. et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 2002; 8: 731-737.
  • 42 Agah A, Kyriakides TR, Lawler J. et al. The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am J Pathol 2002; 161: 831-839.
  • 43 Schneider DJ, Sobel BE. PAI-1 and diabetes: a journey from the bench to the bedside. Diabetes Care 2012; 35: 1961-1967.
  • 44 Devy L, Blacher S, Grignet-Debrus C. et al. The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. Faseb J 2002; 16: 147-154.
  • 45 Alessi MC, Bastelica D, Morange P. et al. Plasminogen activator inhibitor 1, transforming growth factor-beta1, and BMI are closely associated in human adipose tissue during morbid obesity. Diabetes 2000; 49: 1374-1380.
  • 46 Lijnen HR. Effect of plasminogen activator inhibitor-1 deficiency on nutritionally-induced obesity in mice. Thromb Haemost 2005; 93: 816-819.
  • 47 Varma V, Yao-Borengasser A, Bodles AM. et al. Thrombospondin-1 is an adipokine associated with obesity, adipose inflammation, and insulin resistance. Diabetes 2008; 57: 432-439.
  • 48 Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 2002; 282: C947-C970.
  • 49 Katsuki A, Sumida Y, Murashima S. et al. Serum levels of tumor necrosis factor-alpha are increased in obese patients with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1998; 83: 859-862.
  • 50 Fasshauer M, Klein J, Neumann S. et al. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2002; 290: 1084-1089.
  • 51 Rega G, Kaun C, Demyanets S. et al. Vascular endothelial growth factor is induced by the inflammatory cytokines interleukin-6 and oncostatin m in human adipose tissue in vitro and in murine adipose tissue in vivo. Arterioscler Thromb Vasc Biol 2007; 27: 1587-1595.
  • 52 Rega G, Kaun C, Weiss TW. et al. Inflammatory cytokines interleukin-6 and oncostatin m induce plasminogen activator inhibitor-1 in human adipose tissue. Circulation 2005; 111: 1938-1945.
  • 53 Bouloumie A, Sengenes C, Portolan G. et al. Adipocyte produces matrix metalloproteinases 2 and 9: involvement in adipose differentiation. Diabetes 2001; 50: 2080-2086.
  • 54 Lijnen HR, Juhan-Vague I. The fibrinolytic system and obesity. Thromb Haemost 2002; 88: 882.
  • 55 Maquoi E, Munaut C, Colige A. et al. Modulation of adipose tissue expression of murine matrix metalloproteinases and their tissue inhibitors with obesity. Diabetes 2002; 51: 1093-1101.
  • 56 Liu J, Sukhova GK, Sun JS. et al. Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24: 1359-1366.
  • 57 Im E, Venkatakrishnan A, Kazlauskas A. Cathepsin B regulates the intrinsic angiogenic threshold of endothelial cells. Mol Biol Cell 2005; 16: 3488-3500.
  • 58 Alvarez-Llamas G, Szalowska E, de Vries MP. et al. Characterization of the human visceral adipose tissue secretome. Mol Cell Proteomics 2007; 6: 589-600.
  • 59 Voros G, Maquoi E, Collen D. et al. Differential expression of plasminogen activator inhibitor-1, tumor necrosis factor-alpha, TNF-alpha converting enzyme and ADAMTS family members in murine fat territories. Biochim Biophys Acta 2003; 1625: 36-42.
  • 60 Rupnick MA, Panigrahy D, Zhang CY. et al. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci USA 2002; 99: 10730-10735.
  • 61 Lemoine AY, Ledoux S, Queguiner I. et al. Link between adipose tissue angiogenesis and fat accumulation in severely obese subjects. J Clin Endocrinol Metab 2012; 97: E775-E780.
  • 62 Villaret A, Galitzky J, Decaunes P. et al. Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes 2010; 59: 2755-2763.
  • 63 Pasarica M, Rood J, Ravussin E. et al. Reduced oxygenation in human obese adipose tissue is associated with impaired insulin suppression of lipolysis. J Clin Endocrinol Metab 2010; 95: 4052-4055.
  • 64 Halberg N, Khan T, Trujillo ME. et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 2009; 29: 4467-4483.
  • 65 Brahimi-Horn MC, Chiche J, Pouyssegur J. Hypoxia signalling controls metabolic demand. Curr Opin Cell Biol 2007; 19: 223-229.
  • 66 Ye J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int J Obes 2009; 33: 54-66.
  • 67 Hosogai N, Fukuhara A, Oshima K. et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007; 56: 901-911.
  • 68 Hodson L, Humphreys SM, Karpe F. et al. Metabolic Signatures of Human Adipose Tissue Hypoxia in Obesity. Diabetes. 2012. Epub ahead of print.
  • 69 Spencer M, Unal R, Zhu B. et al. Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J Clin Endocrinol Metab 2011; 96: E1990-E1998.
  • 70 Gealekman O, Guseva N, Hartigan C. et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 2011; 123: 186-194.
  • 71 Ledoux S, Coupaye M, Essig M. et al. Traditional anthropometric parameters still predict metabolic disorders in women with severe obesity. Obesity 2009; 18: 1026-1032.
  • 72 Cancello R, Tordjman J, Poitou C. et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 2006; 55: 1554-1561.
  • 73 Poitou C, Divoux A, Faty A. et al. Role of serum amyloid a in adipocyte-macrophage cross talk and adipocyte cholesterol efflux. J Clin Endocrinol Metab 2009; 94: 1810-1817.
  • 74 Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med 2006; 119 (05) (Suppl. 01) S10-S16.
  • 75 Slawik M, Vidal-Puig AJ. Adipose tissue expandability and the metabolic syndrome. Genes Nutr 2007; 2: 41-45.
  • 76 Jonker JW, Suh JM, Atkins AR. et al. A PPARgamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 2012; 485: 391-394.
  • 77 Tan BK, Adya R, Chen J. et al. Metformin decreases angiogenesis via NF-kappaB and Erk1/2/Erk5 pathways by increasing the antiangiogenic thrombospondin-1. Cardiovasc Res 2009; 83: 566-574.
  • 78 Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity?. Br J Nutr 2008; 100: 227-235.
  • 79 Goossens GH, Bizzarri A, Venteclef N. et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 2011; 124: 67-76.
  • 80 Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest 2011; 121: 2094-2101.
  • 81 Cinti S, Mitchell G, Barbatelli G. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46: 2347-2355.
  • 82 Sacks FM, Bray GA, Carey VJ. et al. Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates. N Engl J Med 2009; 360: 859-873.
  • 83 Sjostrom L, Narbro K, Sjostrom CD. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007; 357: 741-752.
  • 84 Dietrich MO, Horvath TL. Limitations in anti-obesity drug development: the critical role of hunger-promoting neurons. Nat Rev Drug Discov 2012; 11: 675-691.
  • 85 Brakenhielm E, Cao R, Gao B. et al. Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ Res 2004; 94: 1579-1588.
  • 86 Barnhart KF, Christianson DR, Hanley PW. et al. A peptidomimetic targeting white fat causes weight loss and improved insulin resistance in obese monkeys. Sci Transl Med 2011; 3: 108ra12.
  • 87 Sun K, Wernstedt Asterholm I, Kusminski CM. et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc Natl Acad Sci USA 2012; 109: 5874-5879.
  • 88 Kim DH, Sartor MA, Bain JR. et al. Rapid and weight-independent improvement of glucose tolerance induced by a peptide designed to elicit apoptosis in adipose tissue endothelium. Diabetes 2012; 61: 2299-2310.
  • 89 Sung HK, Doh KO, Son JE. et al. Adipose Vascular Endothelial Growth Factor Regulates Metabolic Homeostasis through Angiogenesis. Cell Metab 2013; 17: 61-72.
  • 90 Mori Y, Murakawa Y, Okada K. et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care 1999; 22: 908-912.
  • 91 Gealekman O, Guseva N, Gurav K. et al. Effect of rosiglitazone on capillary density and angiogenesis in adipose tissue of normoglycaemic humans in a randomised controlled trial. Diabetologia 2012; 55: 2794-2799.
  • 92 Duh E, Aiello LP. Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox. Diabetes 1999; 48: 1899-1906.
  • 93 Gariano RF, Gardner TW. Retinal angiogenesis in development and disease. Nature 2005; 438: 960-966.
  • 94 Hurwitz H, Fehrenbacher L, Novotny W. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350: 2335-2342.
  • 95 Celletti FL, Waugh JM, Amabile PG. et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 2001; 7: 425-429.
  • 96 Ware JA. Too many vessels? Not enough? The wrong kind? The VEGF debate continues. Nat Med 2001; 7: 403-404.