Skip to main content

Advertisement

Log in

Moderate Global Reduction in Maternal Nutrition Has Differential Stage of Gestation Specific Effects on β1- and β2-Adrenergic Receptors in the Fetal Baboon Liver

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Hepatic β-adrenergic receptors (β-ARs) play a pivotal role in mobilization of reserves via gluconeogenesis and glycogenolysis to supply the animal with its energy needs during decreased nutrient availability. Using a unique nutrient-deprived baboon model, we have demonstrated for the first time that immunoreactive hepatic β1- and β2-AR subtypes are regionally distributed and localized on cells around the central lobular vein in 0.5 and 0.9 gestation (G) fetuses of ad libitum fed control (CTR) and maternal nutrient restricted (MNR) mothers. Furthermore, MNR decreased fetal liver immunoreactive β1-AR and increased immunoreactive β2-AR at 0.5G. However, at 0.9G, immunohistochemistry and Western blot analysis revealed a decrease in β1-AR and no change in β2-AR levels. Thus, MNR in a nonhuman primate species has effects on hepatic β1- and β2-ARs that are receptor- and gestation stage-specific and may represent compensatory systems whose effects would increase glucose availability in the presence of nutrient deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals?. J Physiol (Lond). 2004;561 (pt 2): 355–377.

    Article  CAS  Google Scholar 

  2. Li C, Schlabritz-Loutsevitch NE, Hubbard GB, et al. Effects of maternal global nutrient restriction on fetal baboon hepatic IGF system genes and gene products. Endocrinology. 2009;150 (10): 4634–4642.

    Article  CAS  Google Scholar 

  3. Nijland MJ, Mitsuya K, Li C, et al. Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability. J Physiol. 2010;588 (pt 8): 1349–1359.

    Article  CAS  Google Scholar 

  4. Thai L, Galluzzo JM, McCook EC, Seidler FJ, Slotkin TA. Atypical regulation of hepatic adenylyl cyclase and adrenergic receptors during a critical developmental period: agonists evoke supersensitivity accompanied by failure of receptor down-regulation. Pediatr Res. 1996;39 (4 pt 1): 697–707.

    Article  CAS  Google Scholar 

  5. Carron J, Morel C, Hammon HM, Blum JW. Ontogenetic development of mRNA levels and binding sites of hepatic [beta]-adrenergic receptors in cattle. Domest Anim Endocrinol. 2005;28 (3): 320–330.

    Article  CAS  Google Scholar 

  6. Rizza RA, Cryer PE, Haymond MW, Gerich JE. Adrenergic mechanisms of catecholamine action on glucose homeostasis in man. Metabolism. 1980;29 (11 suppl 1): 1155–1163.

    Article  CAS  Google Scholar 

  7. Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356–363.

    Article  CAS  Google Scholar 

  8. Schmelck PH, Hanoune J. The hepatic adrenergic receptors. Mol Cell Biochem. 1980;33 (1–2): 35–48.

    PubMed  CAS  Google Scholar 

  9. Xiao RP, Zhu W, Zheng M, et al. Subtype-specific [alpha]1- and [beta]-adrenoceptor signaling in the heart. Trends Pharmacol Sci. 2006;27 (6): 330–337.

    Article  CAS  Google Scholar 

  10. Large V, Hellström L, Reynisdottir S, et al. Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J Clin Invest. 1997;100 (12): 3005–3013.

    Article  CAS  Google Scholar 

  11. Nijland MJ, Schlabritz-Loutsevitch N, Hubbard GB, Nathanielsz PW, Cox LA. Nonhuman primate fetal kidney transcriptome analysis indicates mTOR is a central nutrient responsive pathway. J Physiol. 2007;579 (pt 3): 643–656.

    Article  CAS  Google Scholar 

  12. Li C, Levitz M, Hubbard GB, et al. The IGF axis in baboon pregnancy: placental and systemic responses to feeding 70% global ad libitum diet. Placenta. 2007;28 (11–12): 1200–1210.

    Article  CAS  Google Scholar 

  13. Rozance PJ, Limesand SW, Barry JS, et al. Chronic late gestation hypoglycemia up-regulates hepatic PEPCK associated with increased PGC1{alpha} mRNA and pCREB in fetal sheep. Am J Physiol Endocrinol Metab. 2008;294:E365–E370.

    Article  CAS  Google Scholar 

  14. Schlabritz-Loutsevitch NE, Howell K, Rice K, et al. Development of a system for individual feeding of baboons maintained in an outdoor group social environment. J Med Primatol. 2004;33 (3): 117–126.

    Article  Google Scholar 

  15. Schlabritz-Loutsevitch NE, Hubbard GB, Dammann MJ, et al. Normal concentrations of essential and toxic elements in pregnant baboons and fetuses (Papio species). J Med Primatol. 2004;33 (3): 152–162.

    Article  CAS  Google Scholar 

  16. Hendrickx AG Embryology of the Baboon. Chicago, IL: The University of Chicago Press; 1971:18–20.

    Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression using real-time quantitative PCR and the 2-(Delta Delta C(T)) Method. Methods. 2001;25 (4): 402–408.

    Article  CAS  Google Scholar 

  18. Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150 (1): 76–85.

    Article  CAS  Google Scholar 

  19. Martin NP, Whalen EJ, Zamah MA, Pierce KL, Lefkowitz RJ. PKA-mediated phosphorylation of the beta 1-adrenergic receptor promotes Gs/Gi switching. Cell Signal. 2004;16 (12): 1397–1403.

    Article  CAS  Google Scholar 

  20. Cagliani R, Fumagalli M, Pozzoli U, et al. Diverse evolutionary histories for β-adrenoreceptor genes in humans. Am J Hum Genet. 2009;85 (1): 64–75.

    Article  CAS  Google Scholar 

  21. Rohrer DK, Chruscinski AJ, Schauble EH, Bernstein D, Kobilka BK. Cardiovascular and metabolic alterations in mice lacking both β1- and β2-adrenergic receptors. J Biol Chem. 1999;274 (24): 16701–16708.

    Article  CAS  Google Scholar 

  22. Liggins GC. The role of cortisol in preparing the fetus for birth. Reprod Fertil Dev. 1994;6 (2): 141–150.

    Article  CAS  Google Scholar 

  23. Ream MA, Chandra R, Peavey M, et al. High oxygen prevents fetal lethality due to lack of catecholamines. Am J Physiol Regul Integr Comp Physiol. 2008;295 (3): R942–R953.

    Article  CAS  Google Scholar 

  24. Miller RD, Degasparo M. The autonomic nervous system and perinatal metabolism. Ciba Found Symp. 1981;83:291–309.

    Google Scholar 

  25. Chandra R, Portbury AL, Ray A, Ream M, Groelle M, Chikaraishi DM. Beta1-adrenergic receptors maintain fetal heart rate and survival. Biol Neonate. 2006;89 (3): 147–158.

    Article  CAS  Google Scholar 

  26. Slotkin TA, Lau C, Seidler FJ. Beta-adrenergic receptor overexpression in the fetal rat: distribution, receptor subtypes, and coupling to adenylate cyclase activity via G-proteins. Toxicol Appl Pharmacol. 1994;129 (2): 223–234.

    Article  CAS  Google Scholar 

  27. Krief S, Lönnqvist F, Raimbault S, et al. Tissue distribution of β3-adrenergic receptor mRNA in man. J Clin Invest. 1993;91 (1): 344–349.

    Article  CAS  Google Scholar 

  28. Andersson SM. Beta-adrenergic induction of tyrosine aminotransferase in organ culture of fetal rat and fetal human liver. Endocrinology. 1983;112 (2): 466–469.

    Article  CAS  Google Scholar 

  29. Pauerstein CJ, Eddy CA, Croxatto HD, Hess R, Siler-Khodr TM, Croxatto HB. Temporal relationships of estrogen, progesterone, and luteinizing hormone levels to ovulation in women and infrahuman primates. Am J Obstet Gynecol. 1978;130 (8): 876–886.

    Article  CAS  Google Scholar 

  30. Yamamoto Y, Manyon AT, Osawa Y, Kirdani RY, Sandberg AA. Androgen metabolism in the baboon: a comparison with the human. J Steroid Biochem. 1978;9 (8): 751–759.

    Article  CAS  Google Scholar 

  31. Cardani R, Zavanella T. Immunohistochemical localization of β1-adrenergic receptors in the liver of male and female F344 rat. Histochem Cell Biol. 2001;116 (5): 441–445.

    Article  CAS  Google Scholar 

  32. Erraji-Benchekroun L, Couton D, Postic C, et al. Overexpression of ta2-adrenergic receptors in mouse liver alters the expression of gluconeogenic and glycolytic enzymes. Am J Physiol Endocrinol Metab. 2005;288 (4): E715–E722.

    Article  CAS  Google Scholar 

  33. Asensio C, Jimenez M, Kühne F, Rohner-Jeanrenaud F, Muzzin P. The lack of beta-adrenoceptors results in enhanced insulin sensitivity in mice exhibiting increased adiposity and glucose intolerance. Diabetes. 2005;54 (12): 3490–3495.

    Article  CAS  Google Scholar 

  34. Hadcock JR, Wang HY, Malbon CC. Agonist-induced destabilization of beta-adrenergic receptor mRNA. Attenuation of glucocorticoid-induced up-regulation of beta-adrenergic receptors. J Biol Chem. 1989;264 (33): 19928–19933.

    PubMed  CAS  Google Scholar 

  35. Jazayeri A, Meyer WJ. Glucocorticoid modulation of beta-adrenergic receptors of cultured rat arterial smooth muscle cells. Hypertension. 1988;12 (4): 393–398.

    Article  CAS  Google Scholar 

  36. Kiely J, Hadcock JR, Bahouth SW, Malbon CC. Glucocorticoids down-regulate beta 1-adrenergic-receptor expression by suppressing transcription of the receptor gene. Biochem J. 1994;302 (pt 2): 397–403.

    Article  CAS  Google Scholar 

  37. Bahouth SW, Park EA, Beauchamp M, Cui X, Malbon CC. Identification of a glucocorticoid repressor domain in the rat beta 1-adrenergic receptor gene. Recept Signal Transduct. 1996;6 (3–4): 141–149.

    PubMed  CAS  Google Scholar 

  38. Cornett LE, Hiller FC, Jacobi SE, Cao W, McGraw DW. Identification of a glucocorticoid response element in the rat beta 2-adrenergic receptor gene. Mol Pharmacol. 1998;54 (6): 1016–1023.

    Article  CAS  Google Scholar 

  39. Katz MS, Dax EM, Gregerman RI. Beta adrenergic regulation of rat liver glycogenolysis during aging. Exp Gerontol. 1993;28 (4–5): 329–340.

    Article  CAS  Google Scholar 

  40. Katz MS, McNair CL, Hymer TK, Boland SR. Emergence of beta adrenergic-responsive hepatic glycogenolysis in male rats during post-maturational aging. Biochem Biophys Res Commun. 1987;147 (2): 724–730.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Kamat PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamat, A., Nijland, M.J., McDonald, T.J. et al. Moderate Global Reduction in Maternal Nutrition Has Differential Stage of Gestation Specific Effects on β1- and β2-Adrenergic Receptors in the Fetal Baboon Liver. Reprod. Sci. 18, 398–405 (2011). https://doi.org/10.1177/1933719110386496

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110386496

Keywords

Navigation