Skip to main content

Advertisement

Log in

Nuclear Receptor, Coregulator Signaling, and Chromatin Remodeling Pathways Suggest Involvement of the Epigenome in the Steroid Hormone Response of Endometrium and Abnormalities in Endometriosis

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Human endometrium, a steroid hormone-dependent tissue, displays complex cellular regulation mediated by nuclear receptors (NRs). The NRs interact with histone-modifying and DNA-methylating/-demethylating enzymes in the transcriptional complex. We investigated NRs, their coregulators, and associated signaling pathways in endometrium across the normal menstrual cycle and in endometriosis, an estrogen-dependent, progesterone-resistant disorder. Endometrial tissue was processed for analysis of 84 genes using NR and coregulator polymerase chain reaction (PCR) arrays. Select genes were validated by immunohistochemistry. Ingenuity pathway analysis identified DNA methylation and transcriptional repression signaling as the most affected pathway in endometrium in women with versus without endometriosis, regardless of cycle phase. Thyroid hormone receptor (THR) and vitamin D receptor (VDR) pathways were also regulated in normal and disease endometrium by activation of TH or vitamin D regulated genes. These data support the involvement of the epigenome in steroid hormone response of normal endometrium throughout the cycle and abnormalities in endometrium in women with endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auboeuf D, Dowhan DH, Dutertre M, Martin N, Berget SM, O’Malley BW. A subset of nuclear receptor coregulators act as coupling proteins during synthesis and maturation of RNA transcripts. Mol Cell Biol. 2005;25(13):5307–5316.

    CAS  Google Scholar 

  2. Fitzpatrick DR, Wilson CB. Methylation and demethylation in the regulation of genes, cells, and responses in the immune system. Clin Immunol. 2003;109(1):37–45.

    CAS  Google Scholar 

  3. Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005;15(5):490–495.

    CAS  Google Scholar 

  4. Giudice LC.Clinical practice. Endometriosis. N Engl J Med. 2010;362(25):2389–2398.

    CAS  Google Scholar 

  5. Eskenazi B, Warner ML. Epidemiology of endometriosis. Obstet Gynecol Clin North Am. 1997;24(2):235–258.

    CAS  Google Scholar 

  6. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–279.

    CAS  Google Scholar 

  7. Aghajanova L, Velarde MC, Giudice LC. Altered gene expression profiling in endometrium: evidence for progesterone resistance. Semin Reprod Med. 2010;28(1):51–58.

    CAS  Google Scholar 

  8. Bain DL, Heneghan AF, Connaghan-Jones KD, Miura MT. Nuclear receptor structure: implications for function. Annu Rev Physiol. 2007;69:201–220.

    CAS  Google Scholar 

  9. Bulun SE, Cheng YH, Yin P, et al. Progesterone resistance in endometriosis: link to failure to metabolize estradiol. Mol Cell Endocrinol. 2006;248(1–2):94–103.

    CAS  Google Scholar 

  10. Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics. 2006;1(2):106–111.

    Google Scholar 

  11. Aghajanova L, Velarde MC, Giudice LC. The progesterone receptor coactivator Hic-5 is involved in the pathophysiology of endometriosis. Endocrinology. 2009;150(8): 3863–3870.

    CAS  Google Scholar 

  12. Burney RO, Talbi S, Hamilton AE, et al. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007;148(8):3814–3826.

    CAS  Google Scholar 

  13. Aghajanova L, Giudice LC. Molecular evidence for differences in endometrium in severe versus mild endometriosis. Reprod Sci. 2011;18(3):229–251.

    CAS  Google Scholar 

  14. Chuang HC, Chang CW, Chang GD, Yao TP, Chen H. Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic Acids Res. 2006;34(5):1459–1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakai A, Seino S, Sakurai A, Szilak I, Bell GI, DeGroot LJ. Characterization of a thyroid hormone receptor expressed in human kidney and other tissues. Proc Natl Acad Sci U S A. 1988; 85(8):2781–2785.

    CAS  Google Scholar 

  16. Wang Q, Fujii H, Knipp GT. Expression of PPAR and RXR isoforms in the developing rat and human term placentas. Placenta. 2002;23(8–9):661–671.

    CAS  Google Scholar 

  17. Kurooka H, Honjo T. Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J Biol Chem. 2000;275(22):17211–17220.

    CAS  Google Scholar 

  18. Leo C, Chen JD. The SRC family of nuclear receptor coactivators. Gene. 2000;245(1):1–11.

    CAS  Google Scholar 

  19. Wilson BJ, Bates GJ, Nicol SM, Gregory DJ, Perkins ND, Fuller-Pace FV. The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol Biol. 2004;5:11.

    Google Scholar 

  20. Aghajanova L, Stavreus-Evers A, Lindeberg M, Landgren BM, Sparre LS, Hovatta O. Thyroid-stimulating hormone receptor and thyroid hormone receptors are involved in human endometrial physiology. Fertil Steril. 2011;95(1):230–237 e232.

    Google Scholar 

  21. Hess A, Nayak N, Giudice L. Oviduct and endometrium: cyclic changes in primate oviduct and endometrium. In: Knobil E, Neill J, eds. The Physiology of Reproduction. San Diego: Academic Press; 2005:337–381.

    Google Scholar 

  22. Vienonen A, Miettinen S, Blauer M, et al. Expression of nuclear receptors and cofactors in human endometrium and myometrium. J Soc Gynecol Investig. 2004;11(2):104–112.

    CAS  Google Scholar 

  23. Shiozawa T, Shih HC, Miyamoto T, et al. Cyclic changes in the expression of steroid receptor coactivators and corepressors in the normal human endometrium. J Clin Endocrinol Metab. 2003; 88(2):871–878.

    CAS  Google Scholar 

  24. Wieser F, Schneeberger C, Hudelist G, et al. Endometrial nuclear receptor co-factors SRC-1 and N-CoR are increased in human endometrium during menstruation. Mol Hum Reprod. 2002;8(7): 644–650.

    CAS  Google Scholar 

  25. Catalano RD, Critchley HO, Heikinheimo O, et al. Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol Hum Reprod. 2007; 13(9):641–654.

    CAS  Google Scholar 

  26. Liu XF, Bagchi MK. Recruitment of distinct chromatin-modifying complexes by tamoxifen-complexed estrogen receptor at natural target gene promoters in vivo. J Biol Chem. 2004;279(15): 15050–15058.

    CAS  Google Scholar 

  27. Hodges-Gallagher L, Valentine CD, Bader SE, Kushner PJ. Inhibition of histone deacetylase enhances the anti-proliferative action of antiestrogens on breast cancer cells and blocks tamoxifen-induced proliferation of uterine cells. Breast Cancer Res Treat. 2007;105(3):297–309.

    CAS  Google Scholar 

  28. Krusche CA, Vloet AJ, Classen-Linke I, von Rango U, Beier HM, Alfer J. Class I histone deacetylase expression in the human cyclic endometrium and endometrial adenocarcinomas. Hum Reprod. 2007;22(11):2956–2966.

    CAS  Google Scholar 

  29. Talbi S, Hamilton AE, Vo KC, et al. Molecular phenotyping of human endometrium distinguishes menstrual cycle phases and underlying biological processes in normo-ovulatory women. Endocrinology. 2006;147(3):1097–1121.

    CAS  Google Scholar 

  30. Munro SK, Farquhar CM, Mitchell MD, Ponnampalam AP. Epigenetic regulation of endometrium during the menstrual cycle. Mol Hum Reprod. 2010;16(5):297–310.

    CAS  Google Scholar 

  31. Suzuki A, Horiuchi A, Oka K, Miyamoto T, Kashima H, Shiozawa T. Immunohistochemical detection of steroid receptor cofactors in ovarian endometriosis: involvement of down-regulated SRC-1 expression in the limited growth activity of the endometriotic epithelium. Virchows Arch. 2010;456(4):433–441.

    CAS  Google Scholar 

  32. Uchikawa J, Shiozawa T, Shih HC, et al. Expression of steroid receptor coactivators and corepressors in human endometrial hyperplasia and carcinoma with relevance to steroid receptors and Ki-67 expression. Cancer. 2003;98(10):2207–2213.

    CAS  Google Scholar 

  33. Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB. The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or SMRT. Mol Endocrinol. 1997;11(6):693–705.

    CAS  PubMed  Google Scholar 

  34. Li H, Leo C, Schroen DJ, Chen JD. Characterization of receptor interaction and transcriptional repression by the corepressor SMRT. Mol Endocrinol. 1997;11(13):2025–2037.

    CAS  Google Scholar 

  35. Smith CL, Nawaz Z, O’Malley BW. Coactivator and corepressor regulation of the agonist/antagonist activity of the mixed antiestrogen, 4-hydroxytamoxifen. Mol Endocrinol. 1997;11(6): 657–666.

    CAS  Google Scholar 

  36. Jackson KS, Brudney A, Hastings JM, Mavrogianis PA, Kim JJ, Fazleabas AT. The altered distribution of the steroid hormone receptors and the chaperone immunophilin FKBP52 in a baboon model of endometriosis is associated with progesterone resistance during the window of uterine receptivity. Reprod Sci. 2007;14(2): 137–150.

    CAS  Google Scholar 

  37. DeMayo FJ, Zhao B, Takamoto N, Tsai SY. Mechanisms of action of estrogen and progesterone. Ann N Y Acad Sci. 2002; 955:48–59; discussion 86–48, 396–406.

    Google Scholar 

  38. Xu J, Qiu Y, DeMayo FJ, Tsai SY, Tsai MJ, O’Malley BW. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science. 1998;279(5358): 1922–1925.

    CAS  Google Scholar 

  39. Garcia-Silva S, Aranda A. The thyroid hormone receptor is a suppressor of ras-mediated transcription, proliferation, and transformation. Mol Cell Biol. 2004;24(17):7514–7523.

    CAS  Google Scholar 

  40. Velarde MC, Aghajanova L, Nezhat CR, Giudice LC. Increased mitogen-activated protein kinase kinase/extracellularly regulated kinase activity in human endometrial stromal fibroblasts of women with endometriosis reduces 3’,5’-cyclic adenosine 5’-monophosphate inhibition of cyclin D1. Endocrinology. 2009;150(10):4701–4712.

    CAS  Google Scholar 

  41. Jacobs AM, Nicol SM, Hislop RG, Jaffray EG, Hay RT, Fuller-Pace FV. SUMO modification of the DEAD box protein p68 modulates its transcriptional activity and promotes its interaction with HDAC1. Oncogene. 2007;26(40):5866–5876.

    CAS  Google Scholar 

  42. Fuller-Pace FV. DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res. 2006;34(15):4206–4215.

    CAS  Google Scholar 

  43. Endoh H, Maruyama K, Masuhiro Y, et al. Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol. 1999;19(8):5363–5372.

    CAS  Google Scholar 

  44. Clark EL, Coulson A, Dalgliesh C, et al. The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Res. 2008;68(19): 7938–7946.

    CAS  Google Scholar 

  45. Carter CL, Lin C, Liu CY, Yang L, Liu ZR. Phosphorylated p68 RNA helicase activates Snail1 transcription by promoting HDAC1 dissociation from the Snail1 promoter. Oncogene. 2010;29(39):5427–5436.

    CAS  Google Scholar 

  46. Santos-Rosa H, Caldas C. Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer. 2005;41(16):2381–2402.

    CAS  Google Scholar 

  47. Yoo EJ, Chung JJ, Choe SS, Kim KH, Kim JB. Down-regulation of histone deacetylases stimulates adipocyte differentiation. J Biol Chem. 2006;281(10):6608–6615.

    CAS  Google Scholar 

  48. Guo SW. Epigenetics of endometriosis. Mol Hum Reprod. 2009; 15(10):587–607.

    CAS  Google Scholar 

  49. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101(7):1379–1384.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda C. Giudice MD, PhD, MSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelenko, Z., Aghajanova, L., Irwin, J.C. et al. Nuclear Receptor, Coregulator Signaling, and Chromatin Remodeling Pathways Suggest Involvement of the Epigenome in the Steroid Hormone Response of Endometrium and Abnormalities in Endometriosis. Reprod. Sci. 19, 152–162 (2012). https://doi.org/10.1177/1933719111415546

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719111415546

Keywords

Navigation