Skip to main content
Log in

Progesterone Receptor–Mediated Actions Regulate Remodeling of the Cervix in Preparation for Preterm Parturition

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This study determined whether a progesterone (P) receptor (PR)-mediated mechanism regulates morphological characteristics associated with prepartum cervix remodeling at term and with preterm birth. With focus on the transition from a soft to ripe cervix, the cervix stroma of untreated controls had reduced cell nuclei density/area and less organized extracellular collagen, while the density of macrophages/area, but not neutrophils, increased just 2 days before birth (day 17 vs day 15 or 16.5 postbreeding). Preterm birth was induced within 24 hours of treatment on day 16 postbreeding with PR antagonist or ovariectomy (Ovx). Pure or mixed PR antagonists increased the density of macrophages in the cervix within 8 hours (day 16.5 postbreeding), in advance of preterm birth. However, neither PR antagonists nor P withdrawal after Ovx affected the densities of cell nuclei and neutrophils or extracellular collagen compared to the same day controls—an indication that the cervix was sufficiently remodeled for birth to occur. To block the effect of systemic P withdrawal, Ovx pregnant mice were given a PR agonist, either pure or mixed. These treatments forestalled preterm birth and prevented further morphological remodeling of the cervix. The resulting increase in macrophage density in cervix stroma following Ovx was only blocked by a pure PR agonist. These findings support the hypothesis that inflammatory processes in the prepartum cervix that include residency of macrophages, cellular hypertrophy, and extracellular collagen structure are regulated by genomic actions of PR in a final common mechanism both at term and with induced preterm birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leppert PC. Anatomy and physiology of cervical ripening. Clin Obstet Gynecol. 1995;38(2):267–279.

    CAS  PubMed  Google Scholar 

  2. Word RA, Li XH, Hnat M, Carrick K. Dynamics of cervical remodeling during pregnancy and parturition: mechanisms and current concepts. Semin Reprod Med. 2007;25(1):69–79.

    CAS  PubMed  Google Scholar 

  3. Danforth DN, Veis A, Breen M, et al. The effect of pregnancy and labor on the human cervix: changes in collagen, glycoproteins, and glycosaminoglycans. Am J Obstet Gynecol. 1974;120(5):641–651.

    CAS  PubMed  Google Scholar 

  4. van Engelen E, de Groot MW, Breeveld-Dwarkasing VN, et al. Cervical ripening and parturition in cows are driven by a cascade of pro-inflammatory cytokines. Reprod Domest Anim. 2009;44(5):834–841.

    PubMed  Google Scholar 

  5. Osman I, Young A, Ledingham MA, et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 2003;9(1):41–45.

    CAS  PubMed  Google Scholar 

  6. Payne KJ, Clyde LA, Weldon AJ, Milford TA, Yellon SM. Residency and activation of myeloid cells during remodeling of the prepartum murine cervix. Biol Reprod. 2012;87(5):106.

    PubMed  PubMed Central  Google Scholar 

  7. Denison FC, Riley SC, Elliott CL, Kelly RW, Calder AA, Critchley HO. The effect of mifepristone administration on leukocyte populations, matrix metalloproteinases and inflammatory mediators in the first trimester cervix. Mol Hum Reprod. 2000;6(6):541–548.

    CAS  PubMed  Google Scholar 

  8. Dubicke A, Ekman-Ordeberg G, Mazurek P, Miller L, Yellon SM. Density of stromal cells and macrophages associated with collagen remodeling in the human cervix in preterm and term birth. Reprod Sci. 2016;23(5):595–603.

    CAS  PubMed  Google Scholar 

  9. Csapo AI, Wiest WG. An examination of the quantitative relationship between progesterone and the maintenance of pregnancy. Endocrinology. 1969;85(4):735–746.

    CAS  PubMed  Google Scholar 

  10. Zakar T, Hertelendy F. Progesterone withdrawal: key to parturition. Am J Obstet Gynecol. 2007;196(4):289–296.

    CAS  PubMed  Google Scholar 

  11. Mitchell BF, Taggart MJ. Are animal models relevant to key aspects of human parturition? Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R525–R545.

    CAS  PubMed  Google Scholar 

  12. Yellon SM, Dobyns AE, Beck HL, Kurtzman JT, Garfield RE, Kirby MA. Loss of progesterone receptor-mediated actions induce preterm cellular and structural remodeling of the cervix and premature birth. PLoS One. 2013;8(12):e81340.

    PubMed  PubMed Central  Google Scholar 

  13. Rodriguez HA, Kass L, Varayoud J, et al. Collagen remodelling in the guinea-pig uterine cervix at term is associated with a decrease in progesterone receptor expression. Mol Hum Reprod. 2003;9(12):807–813.

    CAS  PubMed  Google Scholar 

  14. Yellon SM, Oshiro BT, Chhaya TY, et al. Remodeling of the cervix and parturition in mice lacking the progesterone receptor B isoform. Biol Reprod. 2011;85(3):498–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirby LS, Kirby MA, Warren JW, Tran LT, Yellon SM. Increased innervation and ripening of the prepartum murine cervix. J Soc Gynecol Investig. 2005;12(8):578–585.

    CAS  PubMed  Google Scholar 

  16. Feltovich H, Ji H, Janowski JW, Delance NC, Moran CC, Chien EK. Effects of selective and nonselective PGE2 receptor agonists on cervical tensile strength and collagen organization and microstructure in the pregnant rat at term. Am J Obstet Gynecol. 2005;192(3):753–760.

    CAS  PubMed  Google Scholar 

  17. Mesiano S, Chan EC, Fitter JT, Kwek K, Yeo G, Smith R. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J Clin Endocrinol Metab. 2002;87(6):2924–2930.

    CAS  PubMed  Google Scholar 

  18. Haluska GJ, Wells TR, Hirst JJ, Brenner RM, Sadowsky DW, Novy MJ. Progesterone receptor localization and isoforms in myometrium, decidua, and fetal membranes from rhesus macaques: evidence for functional progesterone withdrawal at parturition. J Soc Gynecol Investig. 2002;9(3):125–136.

    CAS  PubMed  Google Scholar 

  19. Clark K, Ji H, Feltovich H, Janowski J, Carroll C, Chien EK. Mifepristone-induced cervical ripening: structural, biomechanical, and molecular events. Am J Obstet Gynecol. 2006;194(5):1391–1398.

    CAS  PubMed  Google Scholar 

  20. Kelly RW. Pregnancy maintenance and parturition: the role of prostaglandin in manipulating the immune and inflammatory response. Endocr Rev. 1994;15(5):684–706.

    CAS  PubMed  Google Scholar 

  21. Milligan SR, Finn CA. Minimal progesterone support required for the maintenance of pregnancy in mice. Hum Reprod. 1997;12(3):602–607.

    CAS  PubMed  Google Scholar 

  22. Chwalisz K. The use of progesterone antagonists for cervical ripening and as an adjunct to labour and delivery1. Hum Reprod. 1994;9(suppl 1):131–161.

    CAS  PubMed  Google Scholar 

  23. Fang X, Wong S, Mitchell BF. Effects of RU486 on estrogen, progesterone, oxytocin, and their receptors in the rat uterus during late gestation. Endocrinology. 1997;138(7):2763–2768.

    CAS  PubMed  Google Scholar 

  24. Dudley DJ, Dangerfield A, Edwin SS. Interleukin-10 (IL-10) prevents preterm birth in a mouse model of infection-mediated preterm labor. J Soc Gynecol Invest. 1996;3:67A.

    Google Scholar 

  25. Stenlund PM, Ekman G, Aedo AR, Bygdeman M. Induction of labor with mifepristone - A randomized, double-blind study versus placebo. Acta Obstet Gynecol Scand. 1999;78(9):793–798.

    CAS  PubMed  Google Scholar 

  26. Wing DA, Fassett MJ, Mishell DR. Mifepristone for preinduction cervical ripening beyond 41 weeks’ gestation: a randomized controlled trial. Obstet Gynecol. 2000;96(4):543–548.

    CAS  PubMed  Google Scholar 

  27. Leppert PC, Woessner JF Jr. The Extracellular Matrix of the Uterus, Cervix and Fetal Membranes: Synthesis, Degradation and Hormonal Regulation. Ithaca, NY: Ithaca Perinatology Press; 1991.

    Google Scholar 

  28. Romero R, Yeo L, Chaemsaithong P, Chaiworapongsa T, Hassan SS. Progesterone to prevent spontaneous preterm birth. Semin Fetal Neonatal Med. 2014;19(1):15–26.

    PubMed  Google Scholar 

  29. Hegele-Hartung C, Chwalisz K, Beier HM, Elger W. Ripening of the uterine cervix of the guinea-pig after treatment with the progesterone antagonist onapristone (ZK 98.299): an electron microscopic study. Hum Reprod. 1989;4(4):369–377.

    CAS  PubMed  Google Scholar 

  30. Meis PJ, Klebanoff M, Thom E, et al. Prevention of recurrent preterm delivery by 17 alpha-hydroxyprogesterone caproate. N Engl J Med. 2003;348(24):2379–2385.

    CAS  PubMed  Google Scholar 

  31. Johnson JW, Austin KL, Jones GS, Davis GH, King TM. Efficacy of 17alpha-hydroxyprogesterone caproate in the prevention of premature labor. N Engl J Med. 1975;293(14):675–680.

    CAS  PubMed  Google Scholar 

  32. Csapo A. Progesterone block. Am J Anat. 1956;98(2):273–291.

    CAS  PubMed  Google Scholar 

  33. Meis PJ. 17 hydroxyprogesterone for the prevention of preterm delivery. Obstet Gynecol. 2005;105(5 pt 1):1128–1135.

    CAS  PubMed  Google Scholar 

  34. Yellon SM, Burns AE, See JL, Lechuga TJ, Kirby MA. Progesterone withdrawal promotes remodeling processes in the nonpregnant mouse cervix. Biol Reprod. 2009;81(1):1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Facchinetti F, Paganelli S, Comitini G, Dante G, Volpe A. Cervical length changes during preterm cervical ripening: effects of 17-alpha-hydroxyprogesterone caproate. Am J Obstet Gynecol. 2007;196:453. e451–454; discussion 421.

    Google Scholar 

  36. Durnwald CP, Lynch CD, Walker H, Iams JD. The effect of treatment with 17 alpha-hydroxyprogesterone caproate on changes in cervical length over time. Am J Obstet Gynecol. 2009;201(4):410. e411-415.

    PubMed  Google Scholar 

  37. Iams JD. Prevention of preterm parturition. N Engl J Med. 2014;370(19):1861.

    CAS  PubMed  Google Scholar 

  38. Byrns MC. Regulation of progesterone signaling during pregnancy: implications for the use of progestins for the prevention of preterm birth. J Steroid Biochem Mol Biol. 2014;139:173–181.

    CAS  PubMed  Google Scholar 

  39. Shi L, Shi SQ, Saade GR, Chwalisz K, Garfield RE. Studies of cervical ripening in pregnant rats: effects of various treatments. Mol Hum Reprod. 2000;6(4):382–389.

    CAS  PubMed  Google Scholar 

  40. Yellon SM, Ebner CA, Elovitz MA. Medroxyprogesterone acetate modulates remodeling, immune cell census, and nerve fibers in the cervix of a mouse model for inflammation-induced preterm birth. Reprod Sci. 2009;16(3):257–264.

    CAS  PubMed  Google Scholar 

  41. Garfield RE, Gasc JM, Baulieu EE. Effects of the antiprogesterone RU 486 on preterm birth in the rat. Am J Obstet Gynecol. 1987;157(5):1281–1285.

    CAS  PubMed  Google Scholar 

  42. Milligan SR, Cohen PE. Silastic implants for delivering physiological concentrations of progesterone to mice1. Reprod Fertil Dev. 1994;6(2):235–239.

    CAS  PubMed  Google Scholar 

  43. Piekorz RP, Gingras S, Hoffmeyer A, Ihle JN, Weinstein Y. Regulation of progesterone levels during pregnancy and parturition by signal transducer and activator of transcription 5 and 20alpha-hydroxysteroid dehydrogenase. Mol Endocrinol. 2005;19(2):431–440.

    CAS  PubMed  Google Scholar 

  44. Philibert D, Bouchoux F, Degryse M, Lecaque D, Petit F, Gaillard M. The pharmacological profile of a novel norpregnance progestin (trimegestone). Gynecol Endocrinol. 1999;13(5):316–326.

    CAS  PubMed  Google Scholar 

  45. Alexander DP, Frazer JF, Lee J. The effect of steroids on the maintenance of pregnancy in the spayed rat. J Physiol. 1955;130(1):148–155.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Elovitz M, Wang Z. Medroxyprogesterone acetate, but not progesterone, protects against inflammation-induced parturition and intrauterine fetal demise. Am J Obstet Gynecol. 2004;190(3):693–701.

    CAS  PubMed  Google Scholar 

  47. Elovitz MA, Mrinalini C. Can medroxyprogesterone acetate alter Toll-like receptor expression in a mouse model of intrauterine inflammation? Am J Obstet Gynecol. 2005;193(3 pt 2):1149–1155.

    CAS  PubMed  Google Scholar 

  48. Milligan SR, Cohen PE, Finn CA. The minimum requirements for oestradiol to induce uterine sensitivity for implantation and decidualization in mice. Hum Reprod. 1995;10(6):1502–1506.

    CAS  PubMed  Google Scholar 

  49. Luque EH, Munoz de Toro MM, Ramos JG, Rodriguez HA, Sherwood OD. Role of relaxin and estrogen in the control of eosinophilic invasion and collagen remodeling in rat cervical tissue at term. Biol Reprod. 1998;59(4):795–800.

    CAS  PubMed  Google Scholar 

  50. Rich L, Whittaker P. Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. Braz J Morphol Sci. 2005;22(2):97–104.

    Google Scholar 

  51. Boyd JW, Lechuga TJ, Ebner CA, Kirby MA, Yellon SM. Cervix remodeling and parturition in the rat: lack of a role for hypogastric innervation. Reproduction. 2009;137(4):739–748.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu SY, Tozzi CA, Babiarz J, Leppert PC. Collagen changes in rat cervix in pregnancy—polarized light microscopic and electron microscopic studies. Proc Soc Exp Biol Med. 1995;209(4):360–368.

    CAS  PubMed  Google Scholar 

  53. Yoshida K, Jiang H, Kim M, et al. Quantitative evaluation of collagen crosslinks and corresponding tensile mechanical properties in mouse cervical tissue during normal pregnancy. PLoS One. 2014;9(11):e112391.

    PubMed  PubMed Central  Google Scholar 

  54. Golichowski AM, King SR, Mascaro K. Pregnancy-related changes in rat cervical glycosaminoglycans. Biochem J. 1980;192(1):1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yoshida K, Reeves C, Vink J, et al. Cervical collagen network remodeling in normal pregnancy and disrupted parturition in Antxr2 deficient mice. J Biomech Eng. 2014;136(2):021017.

    PubMed  Google Scholar 

  56. Collins JJ, Usip S, McCarson KE, Papka RE. Sensory nerves and neuropeptides in uterine cervical ripening. Peptides. 2002;23(1):167–183.

    CAS  PubMed  Google Scholar 

  57. Gordon S, Hamann J, Lin HH, Stacey M. F4/80 and the related adhesion-GPCRs. Eur J Immunol. 2011;41(9):2472–2476.

    CAS  PubMed  Google Scholar 

  58. Timmons BC, Mahendroo MS. Timing of neutrophil activation and expression of proinflammatory markers do not support a role for neutrophils in cervical ripening in the mouse. Biol Reprod. 2006;74(2):236–245.

    CAS  PubMed  Google Scholar 

  59. Yellon SM, Ebner CA, Sugimoto Y. Parturition and recruitment of macrophages in cervix of mice lacking the prostaglandin F receptor. Biol Reprod. 2008;78(3):438–444.

    CAS  PubMed  Google Scholar 

  60. Timmons BC, Fairhurst AM, Mahendroo MS. Temporal changes in myeloid cells in the cervix during pregnancy and parturition. J Immunol. 2009;182(5):2700–2707.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kelly RW. Inflammatory mediators and cervical ripening. J Reprod Immunol. 2002;57(1-2):217–224.

    CAS  PubMed  Google Scholar 

  62. Heuerman AH, TT, Mesiano S, Yellon SM. The role of progesterone receptors in remodeling the cervix of prepartum mice. Biol Reprod. 94(4) Suppl, #23.

  63. Thomson AJ, Telfer JF, Young A, et al. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. Hum Reprod. 1999;14(1):229–236.

    CAS  PubMed  Google Scholar 

  64. Cha J, Bartos A, Egashira M, et al. Combinatory approaches prevent preterm birth profoundly exacerbated by gene-environment interactions. J Clin Invest. 2013;123(9):4063–4075.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stjernholm YM, Sahlin L, Eriksson HA, Bystrom BE, Stenlund PM, Ekman GE. Cervical ripening after treatment with prostaglandin E2 or antiprogestin (RU486). Possible mechanisms in relation to gonadal steroids. Eur J Obstet Gynecol Reprod Biol. 1999;84(1):83–88.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Yellon PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirby, M.A., Heuerman, A.C., Custer, M. et al. Progesterone Receptor–Mediated Actions Regulate Remodeling of the Cervix in Preparation for Preterm Parturition. Reprod. Sci. 23, 1473–1483 (2016). https://doi.org/10.1177/1933719116650756

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116650756

Keywords

Navigation