Skip to main content
Log in

Neuropeptide-processing enzymes: Applications for drug discovery

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Neuropeptides serve many important roles in communication between cells and are an attractive target for drug discovery. Neuropeptides are produced from precursor proteins by selective cleavages at specific sites, and are then broken down by further cleavages. In general, the biosynthetic cleavages occur within the cell and the degradative cleavages occur postsecretion, although there are exceptions where intracellular processing leads to inactivation, or extracellular processing leads to activation of a particular neuropeptide. A relatively small number of peptidases are responsible for processing the majority of neuropeptides, both inside and outside of the cell. Thus, inhibition of any one enzyme will lead to a broad effect on several different neuropeptides and this makes it unlikely that such inhibitors would be useful therapeutics. However, studies with mutant animals that lack functional peptide-processing enzymes have facilitated the discovery of novel neuropeptides, many of which may be appropriate targets for therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clynen E, De Loof A, Schoofs L. The use of peptidomics in endocrine research.Gen Comp Endocrinol. 2003;132:1–9.

    Article  PubMed  CAS  Google Scholar 

  2. Strand FL. Neuropeptides: general characteristics and neuropharmaceutical potential in treating CNS disordersProg Drug Res. 2003;61:1–37.

    PubMed  CAS  Google Scholar 

  3. Tanaka H, Yoshida T, Miyamoto N, et al. Characterization of a family of endogenous neuropeptide ligands for the G protein-coupled receptors GPR7 and GPR8.Proc Natl Acad Sci USA. 2003;100:6251–6256.

    Article  PubMed  CAS  Google Scholar 

  4. Docherty K, Steiner DF. Post-translational proteolysis in polypeptide hormone biosynthesis.Annu Rev Physiol. 1982;44:625–638.

    Article  PubMed  CAS  Google Scholar 

  5. Lindberg I, Hutton JC. Peptide processing proteinases with selectivity for paired basic residues. In: Fricker LD, ed.Peptide Biosynthesis and Processing. Boca Raton, FL: CRC Press; 1991:141–174.

    Google Scholar 

  6. Devi L. Peptide processing at monobasic sites. In: Fricker LD, ed.Peptide Biosynthesis and Processing. Boca Raton, FL: CRC Press; 1991:175–198.

    Google Scholar 

  7. Zhou A, Webb G, Zhu X, Steiner DF. Proteolytic processing in the secretory pathway.J Biol Chem. 1999;274:20745–20748.

    Article  PubMed  CAS  Google Scholar 

  8. Seidah NG, Prat A. Precursor convertases in the secretory pathway, cytosol and extracellular milieu.Essays Biochem.2002;38:79–94.

    PubMed  CAS  Google Scholar 

  9. Che F-Y, Yan L, Li H, Mzhavia N, Devi L, Fricker LD. Identification of peptides from brain and pituitary ofCpe fat/Cpefat mice.Proc Natl Acad Sci USA. 2001;98:9971–9976.

    Article  PubMed  CAS  Google Scholar 

  10. Sigafoos J, Chestnut WG, Merrill BM, Taylor LCE, Diliberto EJ, Viveros OH. Novel peptides from adrenomedullary chromaffin vesicles.J Anat. 1993;183:253–264.

    PubMed  CAS  Google Scholar 

  11. Vilim FS, Aarnisalo AA, Nieminen M, et al. Gene for pain modulatory neuropeptide NPFF: induction in spinal cord by noxious stimuli.Mol Pharmacol. 1999;55:804–811.

    PubMed  CAS  Google Scholar 

  12. Che F-Y, Fricker LD. Quantitation of neuropeptides inCpe fat/Cpefat mice using differential isotopic tags and mass spectrometry.Anal Chem. 2002;74:3190–3198.

    Article  PubMed  CAS  Google Scholar 

  13. Che F-Y, Fricker LD. Quantitative peptidomics of mouse pituitary: comparison of different stable isotopic tags.J Mass Spectrom. 2005;40:238–249.

    Article  PubMed  CAS  Google Scholar 

  14. Che F-Y, Biswas R, Fricker LD. Relative quantitation of peptides in wild type andCpefat/fat mouse pituitary using stable isotopic tags and mass spectrometry.J Mass Spectrom. 2005;40:227–237.

    Article  PubMed  CAS  Google Scholar 

  15. Pan H, Nanno D, Che FY, et al. Neuropeptide processing profile in mice lacking prohormone Convertase-1.Biochemistry. 2005;44:4939–4948.

    Article  PubMed  CAS  Google Scholar 

  16. Che FY, Yuan Q, Kalinina E, Fricker LD. Peptidomics of Cpefat/fat mouse hypothalamus: effect of food deprivation and exercise on peptide levels.J Biol Chem. 2005;280:4451–4461.

    Article  PubMed  CAS  Google Scholar 

  17. Smeekens SP, Steiner DF. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2.J Biol Chem. 1990;265:2997–3000.

    PubMed  CAS  Google Scholar 

  18. Seidah NG, Marcinkiewicz M, Benjannet S, et al. Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, furin, and Kex2: distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2.Mol Endocrinol. 1991;5:111–122.

    Article  PubMed  CAS  Google Scholar 

  19. Smeekens SP, Avruch AS, LaMendola J, Cham SJ, Steiner DF. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT-20 cells and islets of Langerhans.Proc Natl Acad Sci USA. 1991;88:340–344.

    Article  PubMed  CAS  Google Scholar 

  20. Schafer MKH, Day R, Cullinan WE, Chretien M, Seidah NG, Watson SJ. Gene expression of prohormone and proprotein convertases in the rat CNS: a comparative in situ hybridization analysis.J Neurosci. 1993;13:1258–1279.

    PubMed  CAS  Google Scholar 

  21. Braks JAM, Martens GJM. 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway.Cell. 1994;78:263–273.

    Article  PubMed  CAS  Google Scholar 

  22. Fricker LD, McKinzie AA, Sun J, et al. Identification and characterization of proSAAS, a granin-like neuroendocrine peptide precursor that inhibits prohormone processing.J Neurosci. 2000;20:639–648.

    PubMed  CAS  Google Scholar 

  23. Zhu X, Rouille Y, Lamango NS, Steiner DF, Lindberg I. Internal cleavage of the inhibitory 7B2 CT peptide by PC2: a potential mechanism for its inactivation.Proc Natl Acad Sci USA 1996;93:4919–4924.

    Article  PubMed  CAS  Google Scholar 

  24. Cameron A, Fortenberry Y, Lindberg I. The SAAS granin exhibits structural and functional homology to 7B2 and contains a highly potent hexapeptide inhibitor of PC1.FEBS Lett. 2000;473:135–138.

    Article  PubMed  CAS  Google Scholar 

  25. Furuta M, Yano H, Zhou A, et al. Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2.Proc Natl Acad Sci USA. 1997;94:6646–6651.

    Article  PubMed  CAS  Google Scholar 

  26. Furuta M, Zhou A, Webb G, et al. Severe defect in proglucag on processing in islet A-cells of prohormone convertase 2 null mice.J Biol Chem. 2001;276:27197–27202.

    Article  PubMed  CAS  Google Scholar 

  27. Zhu X, Orci L, Carroll R, Norrbom C, Ravazzola M, Steiner DF. Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin internediates in islets of mice lacking prohormone convertase 1/3.Proc Natl Acad Sci USA. 2002;99:10299–10304.

    Article  PubMed  CAS  Google Scholar 

  28. Zhou A, Bloomquist BT, Mains RE. The prohormone convertases PC1 and PC2 mediate distinct endoproteolytic cleavages in a strict temporal order during proopiomelanocortin biosynthetic processing.J Biol Chem. 1993;268:1763–1769.

    PubMed  CAS  Google Scholar 

  29. Breslin MB, Lindberg I, Benjannet S, Mathis JP, Lazure C, Seidah NG. Differential processing of proenkephalin by prohormone convertases 1(3) and 2 and furin.J Biol Chem. 1993;268:27084–27093.

    PubMed  CAS  Google Scholar 

  30. Zhou A, Mains RE. Endoproteolytic processing of proopiomelanocortin and prohormone convertases 1 and 2 in neuroendocrine cells overexpressing prohormone convertases 1 or 2J Biol Chem. 1994;269:17440–17447.

    PubMed  CAS  Google Scholar 

  31. Fricker LD, Snyder SH. Enkephalin convertase: purification and characterization of a specific enkephalin-synthesizing carboxypeptidase localized to adrenal chromaffin granules.Proc Natl Acad Sci USA. 1982;79:3886–3890.

    Article  PubMed  CAS  Google Scholar 

  32. Fricker LD. Carboxypeptidase E.Annu Rev Physiol. 1988;50:309–321.

    Article  PubMed  CAS  Google Scholar 

  33. Aloy P, Companys V, Vendrell J, et al. The crystal structure of the inhibitor-complexed carboxypeptidase D domain II as a basis for the modelling of regulatory carboxypeptidases.J Biol Chem. 2001;276:16177–16184.

    Article  PubMed  CAS  Google Scholar 

  34. Nalamachu SR, Song L, Fricker LD. Regulation of carboxypeptidase E: effect of Ca2+ on enzyme activity and stability.J Biol Chem. 1994;269:11192–11195.

    PubMed  CAS  Google Scholar 

  35. Fricker LD, Snyder SH. Purification and characterization of enkephalin convertase, an enkephalin-synthesizing carboxypeptidase.J Biol. Chem. 1983;258:10950–10955.

    PubMed  CAS  Google Scholar 

  36. Smyth DG, Maruthainar K, Darby NJ, Fricker LD. C-terminal processing of neuropeptides: involvement of carboxypeptidase H.J Neurochem. 1989;53:489–493.

    Article  PubMed  CAS  Google Scholar 

  37. Chen H, Jawahar S, Qian Y, et al. A missense polymorphism in the human carboxypeptidase E gene alters its, enzymatic activity: possible implications in type 2 diabetes mellitus.Hum Mutat. 2001;18:120–131.

    Article  PubMed  Google Scholar 

  38. Naggert JK, Fricker LD, Varlamov O, et al. Hyperproinsulinemia in obesefat/fat mice associated with a point mutation in the carboxypeptidase E gene and reduced carboxypeptidase E activity in the pancreatic islets.Nat Genet. 1995;10:135–142.

    Article  PubMed  CAS  Google Scholar 

  39. Varlamov O, Leiter EH, Fricker LD. Induced and spontaneous mutations at Ser202 of carboxypeptidase E: effect on enzyme expression, activity, and intracellular routing.J Biol Chem. 1996;271:13981–13986.

    Article  PubMed  CAS  Google Scholar 

  40. Fricket LD, Berman YL, Leiter EH, Devi LA. Carboxypeptidase E activity is deficient in mice with the fat mutation: effect on peptide processing.J Biol Chem. 1996;271:30619–30624.

    Article  Google Scholar 

  41. Rovere C, Viale A, Nahon J, Kitabgi P. Impaired processing of brain proneurotensin and promelanin-concentrating hormone in obesefat/fat mice.Endocrinology. 1996;137:2954–2958.

    Article  PubMed  CAS  Google Scholar 

  42. Udupi V, Gomez P, Song L, et al. Effect of carboxypeptidase E deficiency on progastrin processing and gastrin mRNA expression in mice with the fat mutation.Endocrinology. 1997;138:1959–1963.

    Article  PubMed  CAS  Google Scholar 

  43. Cain BM, Wang W, Beinfeld MC. Cholecystokinin (CCK) levels are greatly reduced in the brains but not the duodenums ofCpe fat/Cpefat mice: a regional difference in the involvement of carboxypeptidase E (Cpe) in pro-CCK processing.Endocrinology. 1997;138:4034–4037.

    Article  PubMed  CAS  Google Scholar 

  44. Song L, Fricker LD. Purification and characterization of carboxypeptidase D, a novel carboxypeptidase E-like enzyme, from bovine pituitary.J Biol Chem. 1995;270:25007–25013.

    Article  PubMed  CAS  Google Scholar 

  45. Varlamov O, Fricker LD. Intracellular trafficking of metallocarboxypeptidase D in AtT-20 cells: localization to the trans-Golgi network and recycling from the cell surface.J Cell Sci. 1998;111:877–885.

    PubMed  CAS  Google Scholar 

  46. Varlamov O, Eng FJ, Novikova EG, Fricker LD. Localization of metallocarboxypeptidase D in AtT-20 cells: potential role in prohormone processing.J Biol Chem. 1999;274:14759–14767.

    Article  PubMed  CAS  Google Scholar 

  47. Eipper BA, Milgram SL, Husten EJ, Yun HY, Mains RE. Peptidylglycine alpha-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains.Protein Sci. 1993;2:489–497.

    Article  PubMed  CAS  Google Scholar 

  48. Ouafik LH, Stoffers DA, Campbell TA, et al. The multifunctional peptidylglycine alpha-amidating monooxygenase gene: exon/intron organization of catalytic, processing, and routing domains.Mol Endo crinol. 1992;6:1571–1584.

    Article  CAS  Google Scholar 

  49. Prigge ST, Mains RE, Eipper BA, Amzel LM. New insights into copper monooxygenase and peptide amidation: structure, mechanism, and function.Cell Mol Life Sci. 2000;57:1236–1259.

    Article  PubMed  CAS  Google Scholar 

  50. Kolhekar AS, Mains RE, Eipper BA. Peptidylglycine alpha-amidating monooxygenase: an ascorbate-requiring enzyme.Meth Enzymol. 1997;279:34–43.

    Google Scholar 

  51. Bradbury AF, Smyth DG. Modification of the N-and C-termini of bioactive peptides: amidation and acetylation. In: Fricker LD, ed.Peptide Biosynthesis and Processing. Boca Raton, FL: CRC Press; 1991:231–250.

    Google Scholar 

  52. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach.Nature. 1999;402:656–660.

    Article  PubMed  CAS  Google Scholar 

  53. Lee RWH, Huttner WB. Tyrosine O-sulfated proteins of PC1 pheochromocytoma cells and their sulfation by tyrosylprotein sulfotransferase.J Biol Chem. 1983;258:11326–11332.

    PubMed  CAS  Google Scholar 

  54. Bennett HPJ. Glycosylation, phosphorylation, and sulfation of peptide hormones and their precursors. In: Fricker LD, ed.Peptide Biosynthesis and Processing. Boca Raton, FL: CRC Press; 1991:111–140.

    Google Scholar 

  55. Svensson M, Skold K, Svenningsson P, Andren PE. Peptidomicsbased discovery of novel neuropeptides.J Proteome Res. 2003;2:213–219.

    Article  PubMed  CAS  Google Scholar 

  56. Turner AJ. Exploring the structure and function of zinc metallopeptidases: old enzymes and new discoveries.Biochem Soc Trans. 2003;31:723–727.

    Article  PubMed  CAS  Google Scholar 

  57. Albiston AL, Ye S, Chai SY. Membrane bound members of the M1 family: more than aminopeptidases.Protein Pept Lett. 2004;11:491–500.

    Article  PubMed  CAS  Google Scholar 

  58. Kim SI, Grum-Tokars V, Swanson TA, et al. Novel roles of neuropeptide processing enzymes: EC3.4.24.15 in the neurome.J Neurosci Res. 2003;74:456–467.

    Article  PubMed  CAS  Google Scholar 

  59. Smith AI, Clarke IJ, Lew RA. Post-secretory processing of peptide signals: a novel mechanism for the regulation of peptide hormone receptors.Biochem Soc Trans. 1997;25:1011–1014.

    PubMed  CAS  Google Scholar 

  60. Goumon Y, Lugardon K, Gadroy P, et al. Processing of proenkephalin-A in bovine chromaffin cells. Identification of natural derived fragments by N-terminal sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry.J Biol Chem. 2000;275:38355–38362.

    Article  PubMed  CAS  Google Scholar 

  61. Wei S, Segura S, Vendrell J, et al. Identification and characterization of three membrers of the human metallocarboxypeptidase gene family.J Biol Chem. 2002;277:14954–14964.

    PubMed  CAS  Google Scholar 

  62. Fontenele-Neto JD, Kalinina E, Feng Y, Fricker LD. Identification and distribution of mouse carboxypeptidase A-6.Brain Res Mol Brain Res.

  63. Emoto N, Yanagisawa M. Endothelin-converting enzyme-2 is a membrane-bound, phosphoramidon-sensitive metalloprotease with acidic pH optimum.J Biol Chem. 1995;270:15262–15268.

    Article  PubMed  CAS  Google Scholar 

  64. Mzhavia N, Pan H, Che F-Y, Fricker LD, Devi, LA. Characterization of endothelin-converting enzyme-2. Implication for a role in the nonclassical processing of regulatory peptides.J Biol Chem. 2003;278:14704–14711.

    Article  PubMed  CAS  Google Scholar 

  65. Srinivasan S, Bunch DO, Feng Y, et al. Deficits in reproduction and pro-gonadotropin-releasing hormone processing in male Cpefat mice.Endocrinology. 2004;145:2023–2034.

    Article  PubMed  CAS  Google Scholar 

  66. Qian Y, Devi LA, Mzhavia N, Munzer S, Seidah NG, Fricker LD. The C-terminal region of proSAAS is a potent inhibitor of prohormone convertase 1.J Biol Chem. 2000;275:23596–23601.

    Article  PubMed  CAS  Google Scholar 

  67. Wei S, Feng Y, Che F-Y, et al. Obesity and diabetes in transgenic mice expressing proSAAS.J Endocrinol. 2004;180:357–368.

    Article  PubMed  CAS  Google Scholar 

  68. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G-protein-coupled receptors that regulate feeding behavior.Cell. 1998;92:573–585.

    Article  PubMed  CAS  Google Scholar 

  69. Preti A. Orexins (hypocretins): their role in appetite and arousal.Curr Opin Investig Drugs. 2002;3:1199–1206.

    PubMed  CAS  Google Scholar 

  70. Rodgers RJ, Ishii Y, Halford JC, Blundell JE. Orexins and appetite regulation.Neuropeptides. 2002;36:303–325.

    Article  PubMed  CAS  Google Scholar 

  71. Tao WA, Aebersold R. Advances in quantitative proteomics via stable isotope tagging and mass spectrometry.Curr Opin Biotechnol. 2003;14:110–118.

    Article  PubMed  CAS  Google Scholar 

  72. Goshe MB, Smith RD. Stable isotope-coded proteomic mass spectrometry.Curr Opin Biotechnol. 2003;14:101–109.

    Article  PubMed  CAS  Google Scholar 

  73. Che F-Y, Eipper BA, Mains RE, Fricker LD. Quantitative peptidomics of pituitary glands from mice deficient in copper transport.Cell Mol Biol. 2003;49:713–722.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd D. Fricker.

Additional information

Published: October 5, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fricker, L.D. Neuropeptide-processing enzymes: Applications for drug discovery. AAPS J 7, 44 (2005). https://doi.org/10.1208/aapsj070244

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070244

Keywords

Navigation