Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Fenton chemistry in biology and medicine

  • Josef Prousek

Abstract

Various aspects of the participation of Fenton chemistry in biology and medicine are reviewed. Accumulated evidence shows that both hydroxyl radical and ferryl [Fe(IV)=O]2+ can be formed under a variety of Fenton and Fenton-like reactions. Some examples of metal-independent hydroxyl radical production are included. Extracellular Fenton reaction is illustrated by the white rot and brown rot wood-decaying fungi. The natural and practical utilization of catechol-driven Fenton reaction is also presented.

References

1. M. C. R. Symons, J. M. C. Gutteridge. Free Radicals and Iron: Chemistry, Biology, and Medicine, Oxford University Press, Oxford (1998).Search in Google Scholar

2. B. Halliwell, J. M. C. Gutteridge. Free Radicals in Biology and Medicine, 4th ed., Oxford University Press, Oxford (2006).Search in Google Scholar

3. doi:10.1073/pnas.90.17.7915, B. N. Ames, M. K. Shigenaga, T. M. Hagen. Proc. Natl. Acad. Sci. USA 90, 7915 (1993).Search in Google Scholar

4. doi:10.1016/j.cbi.2005.12.009, M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, M. Mazur. Chem.-Biol. Interact. 160, 1 (2006).Search in Google Scholar

5. doi:10.1016/j.tibs.2006.07.005, B. Halliwell. Trends Biochem. Sci. 31, 509 (2006).Search in Google Scholar

6. H. J. H. Fenton. J. Chem. Soc. 65, 899 (1894).10.1039/CT8946500899Search in Google Scholar

7. doi:10.1002/jlac.19274570102, H. Wieland, W. Franke. Justus Liebigs Ann. Chem. 457, 1 (1927).Search in Google Scholar

8. F. Haber, J. Weiss. Proc. R. Soc. London A 147, 332 (1934).10.1098/rspa.1934.0221Search in Google Scholar

9. doi:10.1039/tf9514700462, W. G. Barb, J. H. Baxendale, P. George, K. R. Hargrave. Trans. Faraday Soc. 47, 462 (1951).Search in Google Scholar

10. doi:10.1039/tf9514700591, W. G. Barb, J. H. Baxendale, P. George, K. R. Hargrave. Trans. Faraday Soc. 47, 591 (1951).Search in Google Scholar

11. doi:10.1016/j.chemosphere.2005.03.052, L. Deguillaume, M. Leriche, N. Chaumerliac. Chemosphere 60, 71 (2005).Search in Google Scholar

12. doi:10.1016/j.freeradbiomed.2005.08.001, C. Lu, W. H. Koppenol. Free Radical Biol. Med. 39, 1581 (2005).Search in Google Scholar

13. doi:10.1016/S1381-1169(01)00099-1, F. Gozzo. J. Mol. Catal. A: Chem. 171, 1 (2001).Search in Google Scholar

14. doi:10.1021/ja01344a505, W. C. Bray, M. H. Gorin. J. Am. Chem. Soc. 54, 2124 (1932).Search in Google Scholar

15. doi:10.1021/cr00027a011, A. L. Feig, S. J. Lippard. Chem. Rev. 94, 759 (1994).Search in Google Scholar

16. J. M. C. Gutteridge, J. V. Bannister. Biochem. J. 234, 225 (1986).Search in Google Scholar

17. E. Graf, J. R. Mahoney, R. G. Bryant, J. W. Eaton. J. Biol. Chem. 259, 3620 (1984).Search in Google Scholar

18. doi:10.1023/A:1023480617038, M. D. Engelmann, R. T. Bobier, T. Hiatt, I. F. Cheng. BioMetals 16, 519 (2003).Search in Google Scholar

19. R. Atkinson. J. Phys. Chem. Ref. Data, Monograph 2 (1994).Search in Google Scholar

20. J. Prousek. Chem. Listy 89, 11 (1995).Search in Google Scholar

21. doi:10.1021/ic00043a009, T. Logager, J. Holcman, K. Sehested, T. Pedersen. Inorg. Chem. 31, 3523 (1992).Search in Google Scholar

22. doi:10.1002/(SICI)1097-4601(1998)30:3<215::AID-KIN7>3.0.CO;2-V, F. Jacobsen, J. Holcman, K. Sehested. Int. J. Chem. Kinet. 30, 215 (1998).Search in Google Scholar

23. doi:10.1021/ja00223a013, J. D. Rush, W. H. Koppenol. J. Am. Chem. Soc. 110, 4957 (1988).Search in Google Scholar

24. doi:10.1016/0891-5849(93)90043-T, S. Goldstein, D. Meyerstein, G. Czapski. Free Radical Biol. Med. 15, 435 (1993).Search in Google Scholar

25. doi:10.1016/0378-4274(95)03532-X, C. C. Winterbourn. Toxicol. Lett. 82/83, 969 (1995).Search in Google Scholar

26. J. T. Groves. J. Chem. Educ. 62, 928 (1985).10.1021/ed062p928Search in Google Scholar

27. doi:10.1021/ja9914846, T. Matsui, S. Ozaki, Y. Watanabe. J. Am. Chem. Soc. 121, 9952 (1999).Search in Google Scholar

28. doi:10.1021/ja00419a049, J. T. Groves, G. A. McCluskey. J. Am. Chem. Soc. 98, 859 (1976).Search in Google Scholar

29. P. Jones. J. Biol. Chem. 276, 13791 (2001).10.1074/jbc.M011413200Search in Google Scholar

30. doi:10.1021/ja9714696, S. Ozaki, Y. Inada, Y. Watanabe. J. Am. Chem. Soc. 120, 8020 (1998).Search in Google Scholar

31. doi:10.1021/ja00132a003, S. Ozaki, P. R. Ortiz de Montellano. J. Am. Chem. Soc. 117, 7056 (1995).Search in Google Scholar

32. doi:10.1016/S0010-8545(02)00024-3, H. B. Dunford. Coord. Chem. Rev. 233-234, 311 (2002).Search in Google Scholar

33. doi:10.1016/S0891-5849(01)00724-9, J. Nordberg, E. S. J. Arnen. Free Radical Biol. Med. 31, 1287 (2001).Search in Google Scholar

34. doi:10.1152/ajpregu.00614.2005, W. A. Pryor, K. N. Houk, C. S. Foote, J. M. Fukuto, L. J. Ignarro, G. L. Squadrito, K. J. A. Davies. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R491 (2006).Search in Google Scholar

35. doi:10.1179/135100002125000596, S. Toyokuni. Redox Report 7, 189 (2002).Search in Google Scholar

36. doi:10.1016/S0891-5849(02)00809-2, K. S. Kasprzak. Free Radical Biol. Med. 32, 958 (2002).Search in Google Scholar

37. doi:10.1016/j.freeradbiomed.2006.10.055, G. R. Borthiry, W. E. Antholine, B. Kalyanaraman, J. M. Myers, C. R. Myers. Free Radical Biol. Med. 42, 738 (2007).Search in Google Scholar

38. doi:10.1016/j.freeradbiomed.2005.09.019, H. Fickl, A. J. Theron, H. Grimmer, J. Oommen, G. J. Ramafi, H. C. Steel, S. S. Visser, R.Anderson. Free Radical Biol. Med. 40, 146 (2006).Search in Google Scholar

39. doi:10.1021/ic960907r, A. M. Al-Ajlouni, E. S. Gould. Inorg. Chem. 36, 362 (1997).Search in Google Scholar

40. doi:10.2307/3579270, P. Wardman, L. P. Candeias. Radiat. Res. 145, 523 (1996).Search in Google Scholar

41. doi:10.1016/S0891-5849(98)00187-7, M. Saran, I. Beck-Speier, B. Fellerhoff, G. Bauer. Free Radical Biol. Med. 26, 482 (1999).Search in Google Scholar

42. E. Halfpenny, P. L. Robinson. J. Chem. Soc. A 928 (1952).10.1039/jr9520000928Search in Google Scholar

43. doi:10.1002/(SICI)1521-3773(19980817)37:15<2088::AID-ANIE2088>3.0.CO;2-1, S. Vayssie, H. Elias. Angew. Chem., Int. Ed. 37, 2088 (1998).Search in Google Scholar

44. doi:10.1074/jbc.271.38.23080, S. L. Hazen, F. F. Hsu, K. Duffin, J. W. Heinecke. J. Biol. Chem. 271, 23080 (1996).Search in Google Scholar

45. doi:10.1021/bi9822980, J. Byun, J. P. Henderson, D. M. Mueller, J. W. Heinecke. Biochemistry 38, 2590 (1999).Search in Google Scholar

46. doi:10.1021/ar960010y, J. M. Fukuto, L. J. Ignarro. Acc. Chem. Res. 30, 149 (1997).Search in Google Scholar

47. doi:10.1021/ja991077u, G. R. Hodges, K. U. Ingold. J. Am. Chem. Soc. 121, 10695 (1999).Search in Google Scholar

48. doi:10.1016/S0891-5849(02)00786-4, O. Augusto, M. G. Bonini, A. M. Amanso, E. Linares, C. C. X. Santos, S. L. De Menezes. Free Radical Biol. Med. 32, 841 (2002).Search in Google Scholar

49. doi:10.1093/mutage/gel032, A. M. Knaapen, N. Gungor, R. P. F. Schins, P. J. A. Borm, F. J. Van Schooten. Mutagenesis 21, 225 (2006).Search in Google Scholar

50. R. L. Willson. Chem. Ind. 183 (1977).Search in Google Scholar

51. doi:10.1016/0014-5793(81)81220-3, C. C. Winterbourn. FEBS Lett. 136, 89 (1981).Search in Google Scholar

52. doi:10.1016/S0891-5849(98)00105-1, H. Nohl, L. Gille, A. V. Kozlov. Free Radical Biol. Med. 25, 666 (1998).Search in Google Scholar

53. doi:10.1016/S0891-5849(01)00824-3, B. Z. Zhu, H. T. Zhao, B. Kalyanaraman, B. Frei. Free Radical Biol. Med. 32, 465 (2002).Search in Google Scholar

54. doi:10.1016/8755-9668(85)90005-5, W. H. Koppenol, J. Butler. Adv. Free Radical Biol. Med. 1, 91 (1985).Search in Google Scholar

55. R. A. Haugland, D. J. Schlemm, R. P. Lyons, P. R. Sferra, A. M. Chakrabarty. Appl. Environ. Microbiol. 56, 1357 (1990).Search in Google Scholar

56. doi:10.1016/S0891-5849(97)00207-4, C. A. Metosh-Dickey, R. P. Mason, G. W. Winston. Free Radical Biol. Med. 24, 155 (1998).Search in Google Scholar

57. doi:10.1074/jbc.M005536200, A. Okado-Matsumoto, I. Fridovich. J. Biol. Chem. 275, 34853 (2000).Search in Google Scholar

58. doi:10.1016/S0891-5849(02)01331-X, L. Benov, A. F. Beema. Free Radical Biol. Med. 34, 429 (2003).Search in Google Scholar

59. doi:10.1016/j.freeradbiomed.2005.06.018, D. Jay, H. Hitomi, K. K. Griendling. Free Radical Biol. Med. 40, 183 (2006).Search in Google Scholar

60. doi:10.1016/S0141-0229(02)00011-X, K. E. Hammel, A. N. Kapich, K. A. Jensen Jr., Z. C. Ryan. Enzyme Microbiol. Technol. 30, 445 (2002).Search in Google Scholar

61. doi:10.1128/AEM.68.4.1534-1540.2002, M. C. N. Saparrat, F. Guillen, A. M. Arambarri, A. T. Martinez, M. J. Martinez. Appl. Environ. Microbiol. 68, 1534 (2002).Search in Google Scholar

62. doi:10.1016/S0043-1354(96)00380-6, L. Young, J. Yu. Water Res. 31, 1187 (1997).Search in Google Scholar

63. doi:10.1016/S0014-5793(99)00180-5, Z. Kerem, K. A. Jensen, K. E. Hammel. FEBS Lett. 446, 49 (1999).Search in Google Scholar

64. doi:10.1128/AEM.70.1.324-331.2004, R. Cohen, M. R. Suzuki, K. E. Hammel. Appl. Environ. Microbiol. 70, 324 (2004).Search in Google Scholar

65. doi:10.1016/j.enzmictec.2004.12.036, A. Aguiar, P. B. de Souza-Crus, A. Ferraz. Enzyme Microbiol. Technol. 38, 873 (2006).Search in Google Scholar

66. A. Paszczynski, R. Crawford, D. Funk, B. Goodel. Appl. Environ. Microbiol. 65, 674 (1999).Search in Google Scholar

67. doi:10.1016/j.jhazmat.2006.06.134, V. Arantes, A. M. F. Milagres. J. Hazard. Mater. 141, 273 (2007).Search in Google Scholar

68. doi:10.1016/j.chemosphere.2006.05.067, A. Aguiar, A. Ferraz. Chemosphere 66, 947 (2007).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2007-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1351/pac200779122325/html
Scroll to top button